Summary: We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.
[7] Medts, T. De, Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups. Bull. Belg. Math. Soc. - Simon Stevin 15 (2008), 699-704. DOI 10.36045/bbms/1225893949 | MR 2475493 | Zbl 1166.20017
[8] González-Sánchez, J., Jaikin-Zapirain, A.: Finite $p$-groups with small automorphism group. Forum Math. Sigma 3 (2015), Article ID e7, 11 pages. DOI 10.1017/fms.2015.6 | MR 3376735 | Zbl 1319.20019
[11] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian. Trans. Am. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. DOI 10.2307/1986409 | MR 1500650
[12] Sehgal, A., Sehgal, S., Sharma, P. K.: The number of automorphism of a finite abelian group of rank two. J. Discrete Math. Sci. Cryptography 19 (2016), 163-171. DOI 10.1080/09720529.2015.1103469 | MR 3502205 | Zbl 07509102