Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
greatest common divisor; natural density; Piatetski-Shapiro sequence
Summary:
We use the estimation of the number of integers $n$ such that $\lfloor n^c \rfloor $ belongs to an arithmetic progression to study the coprimality of integers in $\mathbb {N}^c=\{ \lfloor n^c \rfloor \}_{n\in \mathbb {N}}$, $c>1$, $c\notin \mathbb {N}$.
References:
[1] Bergelson, V., Richter, F. K.: On the density of coprime tuples of the form $(n, \lfloor f_1(n) \rfloor, \dots ,\lfloor f_k(n) \rfloor)$, where $f_1, \dots , f_k$ are functions from a Hardy field. Number Theory: Diophantine Problems, Uniform Distribution and Applications Springer, Cham (2017), 109-135. DOI 10.1007/978-3-319-55357-3_5 | MR 3676397 | Zbl 1414.11083
[2] Cesàro, E.: Étude moyenne di plus grand commun diviseur de deux nombres. Ann. Mat. (2) 13 (1885), 235-250 French \99999JFM99999 17.0144.05. DOI 10.1007/BF02420800
[3] Cesàro, E.: Sur le plus grand commun diviseur de plusieurs nombres. Ann. Mat. (2) 13 (1885), 291-294 French \99999JFM99999 17.0145.01. DOI 10.1007/BF02420803
[4] Cohen, E.: Arithmetical functions of a greatest common divisor. I. Proc. Am. Math. Soc. 11 (1960), 164-171. DOI 10.1090/S0002-9939-1960-0111713-8 | MR 0111713 | Zbl 0096.02906
[5] Delmer, F., Deshouillers, J.-M.: On the probability that $n$ and $[n^c]$ are coprime. Period. Math. Hung. 45 (2002), 15-20. DOI 10.1023/A:1022337727769 | MR 1955189 | Zbl 1026.11003
[6] Deshouillers, J.-M.: A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences. Hardy-Ramanujan J. 41 (2018), 127-132. MR 3935505 | Zbl 1448.11055
[7] Diaconis, P., Erdős, P.: On the distribution of the greatest common divisor. A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes - Monograph Series 45. Institute of Mathematical Statistics, Beachwood (2004), 56-61. DOI 10.1214/lnms/1196285379 | MR 2126886 | Zbl 1268.11139
[8] Dirichlet, G. L.: Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abh. König. Preuss. Akad. Wiss. (1849), 69-83 German. DOI 10.1017/CBO9781139237345.007
[9] Fernández, J. L., Fernández, P.: Asymptotic normality and greatest common divisors. Int. J. Number Theory 11 (2015), 89-126. DOI 10.1142/S1793042115500062 | MR 3280945 | Zbl 1322.11102
[10] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (2008). MR 2445243 | Zbl 1159.11001
[11] Lambek, J., Moser, L.: On integers $n$ relatively prime to $f(n)$. Can. J. Math. 7 (1955), 155-158. DOI 10.4153/CJM-1955-020-0 | MR 0068563 | Zbl 0064.27903
[12] Piatetski-Shapiro, I. I.: On the distribution of the prime numbers in sequences of the form $[f(n)]$. Mat. Sb., N. Ser. 33 (1953), 559-566. MR 0059302 | Zbl 0053.02702
Partner of
EuDML logo