Article
Keywords:
almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
Summary:
Let $\mathcal {P}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal {P}_2(a,q)$ the least almost-prime $\mathcal {P}_2$ which satisfies $\mathcal {P}_2\equiv a\pmod q$. It is proved that for sufficiently large $q$, there holds $$ \mathcal {P}_2(a,q)\ll q^{1.8345}. $$ This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range $1.845$ in place of $1.8345$.
References:
[1] Halberstam, H., Richert, H.-E.:
Sieve Methods. London Mathematical Society Monographs 4. Academic Press, London (1974).
MR 0424730 |
Zbl 0298.10026
[5] Levin, B. V.:
On the least almost prime number in an arithmetic progression and the sequence $k^2x^2+1$. Usp. Mat. Nauk 20 (1965), 158-162 Russian.
MR 0188173 |
Zbl 0154.30002
[6] Mertens, F.:
Ein Beitrag zur analytischen Zahlentheorie: Über die Vertheilung der Primzahlen. J. Reine Angew. Math. 78 (1874), 46-63 German \99999JFM99999 06.0116.01.
DOI 10.1515/crll.1874.78.46 |
MR 1579612
[9] Titchmarsh, E. C.:
A divisor problem. Rend. Circ. Mat. Palermo 54 (1930), 414-429 \99999JFM99999 56.0891.01.
DOI 10.1007/BF03021203