Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
Summary:
Let $\mathcal {P}_r$ denote an almost-prime with at most $r$ prime factors, counted according to multiplicity. Suppose that $a$ and $q$ are positive integers satisfying $(a,q)=1$. Denote by $\mathcal {P}_2(a,q)$ the least almost-prime $\mathcal {P}_2$ which satisfies $\mathcal {P}_2\equiv a\pmod q$. It is proved that for sufficiently large $q$, there holds $$ \mathcal {P}_2(a,q)\ll q^{1.8345}. $$ This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range $1.845$ in place of $1.8345$.
References:
[1] Halberstam, H., Richert, H.-E.: Sieve Methods. London Mathematical Society Monographs 4. Academic Press, London (1974). MR 0424730 | Zbl 0298.10026
[2] Iwaniec, H.: A new form of the error term in the linear sieve. Acta Arith. 37 (1980), 307-320. DOI 10.4064/aa-37-1-307-320 | MR 0598883 | Zbl 0444.10038
[3] Iwaniec, H.: On the Brun-Titchmarsh theorem. J. Math. Soc. Japan 34 (1982), 95-123. DOI 10.2969/jmsj/03410095 | MR 0639808 | Zbl 0486.10033
[4] Jurkat, W. B., Richert, H.-E.: An improvement of Selberg's sieve method. I. Acta Arith. 11 (1965), 217-240. DOI 10.4064/aa-11-2-217-240 | MR 0202680 | Zbl 0128.26902
[5] Levin, B. V.: On the least almost prime number in an arithmetic progression and the sequence $k^2x^2+1$. Usp. Mat. Nauk 20 (1965), 158-162 Russian. MR 0188173 | Zbl 0154.30002
[6] Mertens, F.: Ein Beitrag zur analytischen Zahlentheorie: Über die Vertheilung der Primzahlen. J. Reine Angew. Math. 78 (1874), 46-63 German \99999JFM99999 06.0116.01. DOI 10.1515/crll.1874.78.46 | MR 1579612
[7] Motohashi, Y.: On almost-primes in arithmetic progressions. III. Proc. Japan Acad. 52 (1976), 116-118. DOI 10.3792/pja/1195518371 | MR 0412128 | Zbl 0361.10039
[8] Pan, C. D., Pan, C. B.: Goldbach Conjecture. Science Press, Beijing (1992). MR 1287852 | Zbl 0849.11080
[9] Titchmarsh, E. C.: A divisor problem. Rend. Circ. Mat. Palermo 54 (1930), 414-429 \99999JFM99999 56.0891.01. DOI 10.1007/BF03021203
Partner of
EuDML logo