Previous |  Up |  Next

Article

Title: An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function (English)
Author: Nedic, Mitja
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 117-134
Summary lang: English
.
Category: math
.
Summary: We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions. (English)
Keyword: Herglotz-Nevanlinna function
Keyword: Cauchy-type function
Keyword: symmetric extension
Keyword: Stieltjes inversion formula
MSC: 32A36
MSC: 32A99
idZBL: Zbl 07655758
idMR: MR4541092
DOI: 10.21136/CMJ.2022.0455-21
.
Date available: 2023-02-03T11:09:11Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151507
.
Reference: [1] Agler, J., McCarthy, J. E., Young, N. J.: Operator monotone functions and Löwner functions of several variables.Ann. Math. (2) 176 (2012), 1783-1826. Zbl 1268.47025, MR 2979860, 10.4007/annals.2012.176.3.7
Reference: [2] Akhiezer, N. I.: The Classical Moment Problem and Some Related Questions in Analysis.Hafner Publishing, New York (1965). Zbl 0135.33803, MR 0184042
Reference: [3] Aronszajn, N.: On a problem of Weyl in the theory of singular Sturm-Liouville equations.Am. J. Math. 79 (1957), 597-610. Zbl 0079.10802, MR 0088623, 10.2307/2372564
Reference: [4] Aronszajn, N., Brown, R. D.: Finite-dimensional perturbations of spectral problems and variational approximation methods for eigenvalue problems. I. Finite-dimensional perturbations.Stud. Math. 36 (1970), 1-76. Zbl 0203.45202, MR 0271766, 10.4064/sm-36-1-1-76
Reference: [5] Bernland, A., Luger, A., Gustafsson, M.: Sum rules and constraints on passive systems.J. Phys. A, Math. Theor. 44 (2011), Article ID 145205, 20 pages. Zbl 1222.30031, MR 2780420, 10.1088/1751-8113/44/14/145205
Reference: [6] Cauer, W.: The Poisson integral for functions with positive real part.Bull. Am. Math. Soc. 38 (1932), 713-717. Zbl 0005.36102, MR 1562494, 10.1090/S0002-9904-1932-05510-0
Reference: [7] W. F. Donoghue, Jr.: On the perturbation of spectra.Commun. Pure Appl. Math. 18 (1965), 559-579. Zbl 0143.16403, MR 0190761, 10.1002/cpa.3160180402
Reference: [8] Ivanenko, Y., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nilsson, B., Nordebo, S., Toft, J.: Passive approximation and optimization using B-splines.SIAM J. Appl. Math. 79 (2019), 436-458. Zbl 1416.41008, MR 3917936, 10.1137/17M1161026
Reference: [9] Ivanenko, Y., Nedic, M., Gustafsson, M., Jonsson, B. L. G., Luger, A., Nordebo, S.: Quasi- Herglotz functions and convex optimization.Royal Soc. Open Sci. 7 (2020), Article ID 191541, 15 pages. 10.1098/rsos.191541
Reference: [10] Kac, I. S., Kreĭn, M. G.: $R$-functions -- analytic functions mapping the upper halfplane into itself.Nine Papers in Analysis American Mathematical Society Translations: Series 2, Volume 103. AMS, Providence (1974), 1-18. Zbl 0291.34016, 10.1090/trans2/103
Reference: [11] Koosis, P.: Introduction to $H_p$ Spaces.Cambridge Tracts in Mathematics 115. Cambridge University Press, Cambridge (1998). Zbl 1024.30001, MR 1669574, 10.1017/CBO9780511470950
Reference: [12] Luger, A., Nedic, M.: A characterization of Herglotz-Nevanlinna functions in two variables via integral representations.Ark. Mat. 55 (2017), 199-216. Zbl 1386.32004, MR 3711149, 10.4310/ARKIV.2017.v55.n1.a10
Reference: [13] Luger, A., Nedic, M.: Herglotz-Nevanlinna functions in several variables.J. Math. Anal. Appl. 472 (2019), 1189-1219. Zbl 1418.32002, MR 3906418, 10.1016/j.jmaa.2018.11.072
Reference: [14] Luger, A., Nedic, M.: On quasi-Herglotz functions in one variable.Available at https://arxiv.org/abs/1909.10198v2 (2019), 35 pages. MR 4491827
Reference: [15] Luger, A., Nedic, M.: Geometric properties of measures related to holomorphic functions having positive imaginary or real part.J. Geom. Anal. 31 (2021), 2611-2638. Zbl 1460.28002, MR 4225820, 10.1007/s12220-020-00368-4
Reference: [16] Nedic, M.: Characterizations of the Lebesgue measure and product measures related to holomorphic functions having non-negative imaginary or real part.Int. J. Math. 31 (2020), Article ID 2050102, 27 pages. Zbl 1457.32005, MR 4184434, 10.1142/S0129167X20501025
Reference: [17] Nevanlinna, R.: Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem.Ann. Acad. Sci. Fenn., Ser. A 18 (1922), 1-53 German \99999JFM99999 48.1226.02.
Reference: [18] Simon, B.: The classical moment problem as a self-adjoint finite difference operator.Adv. Math. 137 (1998), 82-203. Zbl 0910.44004, MR 1627806, 10.1006/aima.1998.1728
Reference: [19] Vladimirov, V. S.: Holomorphic functions with non-negative imaginary part in a tubular region over a cone.Mat. Sb., Nov. Ser. 79 (1969), 128-152 Russian. Zbl 0183.08702, MR 0250066
Reference: [20] Vladimirov, V. S.: Generalized Functions in Mathematical Physics.Mir, Moscow (1979). Zbl 0515.46034, MR 0564116
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo