[3] Asadzadeh, M., Beilina, L.:
Convergence of stabilized $P_1$ finite element scheme for time harmonic Maxwell's equations. Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics and Statistics 328. Springer, Cham (2020), 33-43.
DOI 10.1007/978-3-030-48634-1_4 |
MR 4141133 |
Zbl 1446.65158
[4] Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J.:
On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993), 222-237 \99999DOI99999 10.1006/jcph.1993.1214 .
DOI 10.1006/jcph.1993.1214 |
MR 1253460 |
Zbl 0795.65087
[6] Beilina, L.:
Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell's system. Cent. Eur. J. Math. 11 (2013), 702-733.
DOI 10.2478/s11533-013-0202-3 |
MR 3015394 |
Zbl 1267.78044
[8] Beilina, L., Cristofol, M., Niinimäki, K.:
Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Probl. Imaging 9 (2015), 1-25.
DOI 10.3934/ipi.2015.9.1 |
MR 3305884 |
Zbl 1308.35296
[9] Beilina, L., Grote, M. J.:
Adaptive hybrid finite element/difference method for Maxwell's equations. TWMS J. Pure Appl. Math. 1 (2010), 176-197.
MR 2766623 |
Zbl 1236.78028
[10] Beilina, L., Ruas, V.:
An explicit $P_1$ finite-element scheme for Maxwell's equations with constant permittivity in a boundary neighborhood. Available at
https://arxiv.org/abs/1808.10720v4 (2020), 38 pages.
[11] Beilina, L., Ruas, V.:
Convergence of explicit $P_1$ finite-element solutions to Maxwell's equations. Mathematical and Numerical Approaches for Multi-Wave Inverse Problems Springer Proceedings in Mathematics & Statistics 328. Springer, Cham (2020), 91-103.
DOI 10.1007/978-3-030-48634-1_7 |
MR 4141136 |
Zbl 07240119
[12] Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B.:
Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements. J. Comput. Appl. Math. 289 (2015), 371-391.
DOI 10.1016/j.cam.2014.11.055 |
MR 3350783 |
Zbl 1332.78020
[13] Bossavit, A.:
Computational Electromagnetism: Variational Formulations, Complementary, Edge Elements. Electromagnetism, Vol. 2 Academic Press, New York (1998).
MR 1488417 |
Zbl 0945.78001
[15] Araujo, J. H. Carneiro de, Gomes, P. D., Ruas, V.:
Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow. J. Comput. Appl. Math. 234 (2010), 2562-2577.
DOI 10.1016/j.cam.2010.03.025 |
MR 2645211 |
Zbl 1425.76025
[16] Chen, C., Wahl, W. von.:
Das Rand-Anfangswertproblem für quasilineare Wellengleichungen in Sobolevräumen niedriger Ordnung. J. Reine Angew. Math. 337 (1982), 77-112 German \99999DOI99999 10.1515/crll.1982.337.77 .
MR 0676043 |
Zbl 0486.35053
[17] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[24] Jamelot, E.:
Résolution des équations de Maxwell avec des éléments finis de Galerkin continus: Thèse doctorale. L'École Polytechnique, Paris (2005), French.
Zbl 1185.65006
[25] Joly, P.:
Variational methods for time-dependent wave propagation problems. Topics in Computational Wave Propagation: Direct and Inverse Problems Lecture Notes in Computational Science and Engineering 31. Springer, Berlin (2003), 201-264.
DOI 10.1007/978-3-642-55483-4_6 |
MR 2032871 |
Zbl 1049.78028
[26] Křížek, M., Neittaanmäki, P.:
Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics 50. Longman, Harlow (1990).
MR 1066462 |
Zbl 0708.65106
[27] Malmerg, J. B.:
A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system. Inverse Problems and Applications Springer Proceedings in Mathematics & Statistics 120. Springer, Cham (2015), 43-53.
DOI 10.1007/978-3-319-12499-5_3 |
MR 3343199 |
Zbl 1319.78014
[28] Malmberg, J. B.: Efficient Adaptive Algorithms for an Electromagnetic Coefficient Inverse Problem: Doctoral Thesis. University of Gothenburg, Gothenburg (2017).
[29] Malmberg, J. B., Beilina, L.:
Iterative regularization and adaptivity for an electromagnetic coefficient inverse problem. AIP Conf. Proc. 1863 (2017), Article ID 370002.
DOI 10.1063/1.4992549
[30] Malmberg, J. B., Beilina, L.:
An adaptive finite element method in quantitative reconstruction of small inclusions from limited observations. Appl. Math. Inf. Sci. 12 (2018), 1-19.
DOI 10.18576/amis/120101 |
MR 3747879
[33] Patsakos, G.:
Equivalence of the Maxwell and wave equations. Am. J. Phys. 47 (1979), 698-699.
DOI 10.1119/1.11745
[34] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.:
Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method. SIAM J. Sci. Comput. 36 (2014), B273--B293.
DOI 10.1137/130924962 |
MR 3199422 |
Zbl 1410.78018
[35] Thành, N. T., Beilina, L., Klibanov, M. V., Fiddy, M. A.:
Imaging of buried objects from experimental backscattering time-dependent measurements using a globally convergent inverse algorithm. SIAM J. Imaging Sci. 8 (2015), 757-786.
DOI 10.1137/140972469 |
MR 3327354 |
Zbl 1432.35259
[37] Zuo, L., Hou, Y.:
Numerical analysis for the mixed Navier-Stokes and Darcy problem with the Beavers-Joseph interface condition. Numer. Methods Partial Differ. Equations 31 (2015), 1009-1030.
DOI 10.1002/num.21933 |
MR 3343597 |
Zbl 1329.76194