Previous |  Up |  Next

Article

Keywords:
real linear lattice; order interval; locally solid; Banach lattice $C(K)$; strongly compact; weakly compact; pointwise compact; coincidence of topologies; metrizable; scattered; Čech--Stone compactification
Summary:
Let $K$ be a compact space and let $C(K)$ be the Banach lattice of real-valued continuous functions on $K$. We establish eleven conditions equivalent to the strong compactness of the order interval $[0,x]$ in $C(K)$, including the following ones: (i) $\{x>0\}$ consists of isolated points of $K$; (ii) $[0,x]$ is pointwise compact; (iii) $[0,x]$ is weakly compact; (iv) the strong topology and that of pointwise convergence coincide on $[0,x]$; (v) the strong and weak topologies coincide on $[0,x]$. \noindent Moreover, the weak topology and that of pointwise convergence coincide on $[0,x]$ if and only if $\{x>0\}$ is scattered. Finally, the weak topology on $[0,x]$ is metrizable if and only if the topology of pointwise convergence on $[0,x]$ is such if and only if $\{x>0\}$ is countable.
References:
[1] Aliprantis C. D., Burkinshaw O.: Positive Operators. Pure and Applied Mathematics, 119, Academic Press, Orlando, 1985. MR 0809372 | Zbl 1098.47001
[2] Aliprantis C. D., Burkinshaw O.: Locally Solid Riesz Spaces with Applications to Economics. Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003. DOI 10.1090/surv/105 | MR 2011364
[3] Arkhangel'skiĭ A. V.: Topological Function Spaces. Mathematics and Its Applications (Soviet Series), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. DOI 10.1007/978-94-011-2598-7_4 | MR 1144519
[4] Engelking R.: General Topology. Monografie Matematyczne, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[5] Floret K.: Weakly Compact Sets. Lectures held at S.U.N.Y., Buffalo, 1978, Lecture Notes in Mathematics, 801, Springer, Berlin, 1980. MR 0576235
[6] Lipecki Z.: Order intervals in Banach lattices and their extreme points. Colloq. Math. 160 (2020), no. 1, 119–132. DOI 10.4064/cm7726-5-2019 | MR 4071818
[7] Lipecki Z.: Compactness of order intervals in a locally solid linear lattice. Colloq. Math. 168 (2022), no. 2, 297–309. DOI 10.4064/cm8624-11-2021 | MR 4416011
[8] van Mill J.: The Infinite-Dimensional Topology of Function Spaces. North-Holland Mathematical Library, 64, North-Holland Publishing Co., Amsterdam, 2001. MR 1851014 | Zbl 0969.54003
[9] Semadeni Z.: Banach Spaces of Continuous Functions. Vol. I. Monografie Matematyczne, 55, PWN—Polish Scientific Publishers, Warszawa, 1971. MR 0296671
Partner of
EuDML logo