[1] Abed, E. H.:
Strong D-stability. Systems Control Lett. 7 (1986), 207-212.
DOI |
MR 0847892
[2] Chen, W.-H., Yang, S. T., Lu, X., Shen, Y.:
Exponential stability and exponential stabilization of singularly perturbed stochastic systems with time-varying delay. Int. J. Robust Nonlinear Control 20 (2010), 2021-2044.
DOI |
MR 2777531
[3] Chiou, J.-S., Wang, C.-J.:
An infinite $\varepsilon$-bound stability criterion for a class of multiparameter singularly perturbed time-delay systems. Int. J. Systems Sci. 36 (2005), 485-490.
DOI |
MR 2148211
[4] Corless, M., Glielmo, L.:
On the exponential stability of singularly perturbed systems. SIAM J. Control Optim. 30 (1992), 1338-1360.
DOI |
MR 1185626
[5] Desoer, C. A., Shahruz, S. M.:
Stability of nonlinear systems with three time scales. Circuits Systems Signal Process. 5 (1986), 449-464.
DOI |
MR 0893934
[6] Dmitriev, M. G., Kurina, G. A.:
Singular perturbations in control problems. Autom. Remote Control 67 (2006), 1-43.
DOI |
MR 2206169
[7] Dr\u{a}gan, V.:
Near optimal linear quadratic regulator for controlled systems described by Ito differential equations with two fast time scales. Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2017), 89-109.
MR 3663358
[8] Dr\u{a}gan, V.:
On the linear quadratic optimal control for systems described by singularly perturbed Ito differential equations with two fast time scales. Axioms 8 (2019), paper No. 30.
DOI |
MR 3663358
[9] Dr\u{a}gan, V., Ionita, A.:
Exponential stability for singularly perturbed systems with state delays. In: Proc. 6th Colloquium on the Qualitative Theory of Differential Equations, Szeged (1999), pp. 1-8.
DOI |
MR 1798656
[10] Dragan, V., Mukaidani, H.:
Stabilizing composite control for systems modeled by singularly perturbed Ito differential equations with two small time constants. In: Proc. 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, New York 2011, pp. 740-745.
DOI
[11] Erneux, T.:
Applied Delay Differential Equations. Springer, New York 2009.
MR 2498700
[12] Fridman, E.:
Introduction to Time-Delay Systems. Birkhäuser, New York 2014.
MR 3237720
[13] Fridman, E., Shaked, U.:
An improved stabilization method for linear time-delay systems. IEEE Trans. Automat. Control 47 (2002), 1931-1937.
DOI |
MR 1937712
[14] Gajic, Z., Lim, M. T.:
Optimal Control of Singularly Perturbed Linear Systems and Applications. High Accuracy Techniques. Marsel Dekker, New York 2001.
MR 1816761
[15] Gantmacher, F. R.:
The Theory of Matrices. Vol. 2. Chelsea, New York 1974.
MR 0107649
[16] Glizer, V. Y.:
On stabilization of nonstandard singularly perturbed systems with small delays in state and control. IEEE Trans. Automat. Control 49 (2004), 1012-1016.
DOI |
MR 2064381
[17] Glizer, V. Y.:
Uniform stabilizability of parameter-dependent systems with state and control delays by smooth-gain controls. J. Optim. Theory Appl. 183 (2019), 50-65.
DOI |
MR 3989296
[18] Glizer, V. Y.:
Controllability of Singularly Perturbed Linear Time Delay Systems. Birkhäuser 2021.
DOI |
MR 4248805
[19] Glizer, V. Y., Fridman, E.:
Stability of singularly perturbed functional-differential systems: spectrum analysis and LMI approaches. IMA J. Math. Control Inform. 29 (2012), 79-111.
DOI |
MR 2904147
[20] Glizer, V. Y., Fridman, E., Feigin, Y.:
A novel approach to exact slow-fast decomposition of linear singularly perturbed systems with small delays. SIAM J. Control Optim. 55 (2017), 236-274.
DOI |
MR 3604028
[21] Gu, K., Niculescu, S.-I.:
Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125 (2003), 158-165.
DOI
[22] Hale, J. K., Lunel, S. M. Verduyn:
Introduction to Functional Differential Equations. Springer, New York 1993.
DOI |
MR 1243878
[23] Hoppensteadt, F.:
On systems of ordinary differential equations with several parameters multiplying the derivatives. J. Differential Equations 5 (1969), 106-116.
DOI |
MR 0239216
[24] Ioannou, P., Kokotovic, P.:
Decentralized adaptive control of interconnected systems with reduced-order models. Automatica J. IFAC 21 (1985), 401-412.
DOI |
MR 0798185
[25] Ionita, A., Dr\u{a}gan, V.: Stabilization of singularly perturbed linear systems with delay and saturating control. In: Proc. 7th Mediterranean Conference on Control and Automation, Mediterranean Control Association, Cyprus 1999, 1855-1869.
[26] Kathirkamanayagan, M., Ladde, G. S.:
Diagonalization and stability of large-scale singularly perturbed linear system. J. Math. Anal. Appl. 135 (1988), 38-60.
DOI |
MR 0960805
[27] Khalil, H. K.:
Asymptotic stability of nonlinear multiparameter singularly perturbed systems. Automatica J. IFAC 17 (1981), 797-804.
DOI |
MR 0638496
[28] Khalil, H. K.:
Feedback control of nonstandard singularly perturbed systems. IEEE Trans. Automat. Contr. 34 (1989), 1052-1060.
DOI |
MR 1014326
[29] Khalil, H. K., Kokotovic, P. V.:
D-stability and multiparameter singular perturbation. SIAM J. Control Optim. 17 (1979) 56-65.
DOI |
MR 0516856
[30] Khalil, H. K., Kokotovic, P. V.:
Control of linear systems with multiparameter singular perturbations. Automatica J. IFAC 15 (1979), 197-207.
DOI |
MR 0525773
[31] Kokotovic, P. V., Khalil, H. K., O'Reilly, J.:
Singular Perturbation Methods in Control: Analysis and Design. SIAM, Philadelphia 1999.
MR 1727138
[32] Kuehn, C.:
Multiple Time Scale Dynamics. Springer, New York 2015.
DOI |
MR 3309627
[33] Kurina, G. A.:
Complete controllability of various-speed singularly perturbed systems. Math. Notes 52 (1992), 1029-1033.
DOI |
MR 1203952
[34] Ladde, G. S., Šiljak, D. D.:
Multiparameter singular perturbations of linear systems with multiple time scales. Automatica J. IFAC 19 (1983), 385-394.
DOI |
MR 0716052
[35] Mahmoud, M. S.:
Recent progress in stability and stabilization of systems with time-delays. Math. Probl. Engrg. 2017 (2017), article ID 7354654.
DOI |
MR 3666297
[36] Naidu, D. S.:
Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9 (2002), 233-278.
MR 1897791
[37] Nam, P. T., Phat, V. N.:
Robust stabilization of linear systems with delayed state and control. J. Optim. Theory Appl. 140 (2009), 287-299.
DOI |
MR 2472210
[39] Richard, J.-P.:
Time-delay systems: an overview of some recent advances and open problems. Automatica J. IFAC 39 (2003), 1667-1694.
DOI |
MR 2141765
[40] Sagara, M., Mukaidani, H., Dragan, V.:
Near-optimal control for multiparameter singularly perturbed stochastic systems. Optim. Control Appl. Methods 32 (2011), 113-125.
DOI |
MR 2791410
[41] Sipahi, R., Niculescu, S.-I., Abdallah, C. T., Gu, K.:
Stability and stabilization of systems with time delay. IEEE Control Systems Magazine 31 (2011), 38-65.
DOI |
MR 2789811
[42] Sun, F., Yang, C., Zhang, Q., Shen, Y.:
Stability bound analysis of singularly perturbed systems with time-delay. Chemical Industry and Chemical Engineering Quarterly 19 (2013), 505-511.
DOI
[43] Vasil'eva, A. B., Butuzov, V. F., Kalachev, L. V.:
The Boundary Function Method for Singular Perturbation Problems. SIAM, Philadelphia 1995.
MR 1316892