Previous |  Up |  Next

Article

Keywords:
sliding mode differentiator; parameter tuning scheme; adaptive notch filter; altitude ground test facility
Summary:
To tackle the difficulty in tuning the parameters of sliding mode differentiator (SMD), an improved adaptive notch filter based real-time parameter tuning scheme (denoted as ANF-SMD) is presented. Specifically, the integral feedback of the system output errors is introduced in constructing the cost function for the adaptive notch filter so as to estimate the real-time amplitude and frequency of given inputs. Then, upon the deterministic formula between the parameters of the SMD and the input signals, the parameters of the SMD can be adjusted adaptively as inputs vary. Simulation results show that the proposed ANF-SMD scheme performs well in signal filtering and differentiation estimation. The effectiveness of the proposed ANF-SMD is further experimentally verified on the pressure signal processing for the altitude ground test facility.
References:
[1] Alattas, K. A., Mostafaee, J., Alanazi, A. K., Mobayen, S., Vu, M. T., Zhilenkov, A., Abo-Dief, H. M.: Nonsingular terminal sliding mode control based on adaptive barrier function for nth-order perturbed nonlinear systems. Mathematics 10 (2022), 1, 43. DOI 
[2] Alwi, H., Edwards, C.: An adaptive sliding mode differentiator for actuator oscillatory failure case reconstruction. Automatica 49 (2013), 2, 642-651. DOI  | MR 3004735
[3] Ang, K. H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13 (2005), 4, 559-576. DOI 
[4] Ashwood, P. F.: An altitude test facility for large turbofan engines. J. Aircr. 10 (1973), 8, 468-474. DOI 
[5] Barbot, J.-P., Levant, A., Livne, M., Lunz, D.: Discrete differentiators based on sliding modes. Automatica 112 (2020). DOI  | MR 4024634
[6] Castillo-Toledo, B., Gennaro, S. D., López-Cuevas, A.: Tracking through singularities using sliding mode differentiators. Kybernetika 51 (2015), 1, 20-35. DOI  | MR 3333831
[7] Deza, F., Busvelle, E., Gauthier, J. P., Rakotopara, D.: High gain estimation for nonlinear systems. Syst. Control Lett. 18 (1992), 4, 295-299. DOI  | MR 1158656
[8] Ghanes, M., Barbot, J.-P., Fridman, L., Levant, A., Boisliveau, R.: A new varying-gain-exponent-based differentiator/observer: An efficient balance between linear and sliding-mode algorithms. IEEE Trans. Automat. Control 65 (2020), 12, 5407-5414. DOI  | MR 4184867
[9] Ghanes, M., Moreno, J. A., Barbot, J.-P.: Arbitrary order differentiator with varying homogeneity degree. Automatica 138 (2022), p.110111. DOI 10.1016/j.automatica.2021.110111 | MR 4374724
[10] Gui, H.: Observer-based fault-tolerant spacecraft attitude tracking using sequential lyapunov analyses. IEEE Trans. Automat. Control (2021). DOI 10.1109/TAC.2021.3062159 | MR 4349188
[11] Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906. DOI 
[12] Hu, J. P.: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 5, 768-784. DOI  | MR 2599111 | Zbl 1190.93003
[13] Hu, J. P., Chen, G. R., Li, H. X.: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 4, 630-643. MR 2884865 | Zbl 1227.93008
[14] Ibrir, S.: Linear time-derivative trackers. Automatica 40 (2004), 3, 397-405. DOI  | MR 2145267
[15] Kilic, Dogushan, Brem, Benjamin, T., Klein, Felix, al., et: Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: aircraft turbine engines. Environ. Sci. Technol. 51 (2017), 7, 3621-3629. DOI 
[16] Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34 (1998), 3, 379-384. DOI  | MR 1623077 | Zbl 0915.93013
[17] Levant, A., Yu, X.: Sliding-mode-based differentiation and filtering. IEEE Trans. Automat. Contr. 63 (2018), 9, 3061-3067. DOI  | MR 3849410
[18] Liu, G., Li, J., Zheng, S., Chen, Q., Liu, H.: Suppression of Synchronous current using double input improved adaptive notch filter algorithm. IEEE Trans. Ind. Electron. 67 (2020), 10, 8599-8607. DOI 
[19] Meller, M.: Frequency guided generalized adaptive notch filtering-tracking analysis and optimization. IEEE Trans. Signal Process. 63 (2015), 22, 6003-6012. DOI  | MR 3411373
[20] Nasiri, M., Mobayen, S., Arzani, A.: PID-type terminal sliding mode control for permanent magnet synchronous generator based enhanced wind energy conversion systems. CSEE J. Power Energy Syst. DOI 
[21] Oliveira, T. R., Rodrigues, V. H. P., Fridman, L.: Generalized model reference adaptive control by means of global HOSM differentiators. IEEE Trans. Automat. Control 64 (2019), 5, 2053-2060. DOI  | MR 3951047
[22] Orlov, Y., Aoustin, Y., Chevallereau, C.: Finite time stabilization of a perturbed double integrator-part I: Continuous sliding mode-based output feedback synthesis. IEEE Trans. Automat. Control 56 (2011), 3, 614-618. DOI  | MR 2799077
[23] Rinaldi, G., Menon, P. P., Edwards, C., Ferrara, A., Shtessel, Y.: Adaptive dual-layer super-twisting sliding mode observers to reconstruct and mitigate disturbances and communication attacks in power networks. Automatica 129 (2021), p.109656. DOI  | MR 4253862
[24] Su, Y. X., Zheng, C. H., Mueller, P. C., Duan, B. Y.: A simple improved velocity estimation for low-speed regions based on position measurements only. IEEE Trans. Control Syst. Technol. 14 (2006), 5, 937-942. DOI 
[25] Wang, X., Chen, Z., Yang, G.: Finite-time-convergent differentiator based on singular perturbation technique. IEEE Trans. Automat. Control 52 (2007), 9, 1731-1737. DOI  | MR 2352454
[26] Wang, F., He, L.: FPGA-based predictive speed control for PMSM system using integral sliding-mode disturbance observer. IEEE Trans. Ind. Electron. 68 (2021), 2, 972-981. DOI 
[27] Wang, J., Xie, Y., Y, Yu, Xiao, G., Zhang, L., Dan, Z., al., et: A practical parameter tuning algorithm for super-twisting algorithm based differentiator and its application in altitude ground test facility. ISA Trans., under review.
[28] Wang, J., Zhang, H., Xiao, G., Dan, Z., Zhang, S., Xie, Y.: A comparison study of tracking differentiator and robust exact differentiator. In: 2020 China Automation Conference 2020, pp. 1359-1364.
[29] Wu, F., Gao, L., Wu, X., Feng, X., Leng, L., Li, Y.: Aerodynamic modeling and transient performance improvement of a free jet altitude test facility. In: International Conference on Artificial Intelligence and Security, Springer, Singapore 2020, pp. 618-630.
[30] Wu, W., Sun, H., Cai, Y., Jiang, S., Xiong, J.: Tracking multiple maneuvering targets hidden in the DBZ based on the MM-GLMB filter. IEEE Trans. Signal Process. 68 (2020), 2912-2924. DOI  | MR 4144921
[31] Yang, H., Cheng, L., Zhang, J., Xia, Y.: Leader-follower trajectory control for quadrotors via tracking differentiators and disturbance observers. IEEE Trans Syst Man Cybern.: Syst. 51 (2021), 1, 601-609. DOI 
[32] Yan, Y., Yu, S., Yu, X.: Euler's discretization effect on a sliding-mode control system with supertwisting algorithm. IEEE Trans. Automat. Control 66 (2021), 6, 2817-2824. DOI  | MR 4265118
[33] Zhang, H., Xiao, G., Yun, X., Xie, Y.: On convergence performance of discrete-time optimal control based tracking differentiator. IEEE Trans. Ind. Electron. 68 (2021), 4, 3359-3369. DOI 
[34] Zhang, H., Xie, Y., Xiao, G., Zhai, C., Long, Z.: A simple discrete-time tracking differentiator and its application to speed and position detection system for a maglev train. IEEE Trans. Control Syst. Technol. 27 (2019), 4, 1728-1734. DOI 
[35] Zhao, L., Cheng, H., Zhang, J., Xia, Y.: Angle attitude control for a 2-DOF parallel mechanism of PMAs using tracking differentiators. IEEE Trans. Ind. Electron. 66 (2019), 11, 8659-8669. DOI 
Partner of
EuDML logo