[1] Agarwal, R.P., O’Regan, D., Wong, P.J.Y.:
Positive solutions of differential, difference and integral equations. Springer Science and Business Media, 1998.
MR 1680024
[3] Anderson, D.R., Avery, R.I.:
Fixed point theorem of cone expansion and compression of functional type. J. Difference Equ. Appl. 8 (11) (2002), 1073–1083.
DOI 10.1080/10236190290015344 |
MR 1942442
[4] Anderson, D.R., Avery, R.I.:
A topological proof and extension of the Leggett-Williams fixed point theorem. Commun. Appl. Nonlinear Anal. 16 (4) (2009), 39–44.
MR 2591327
[6] Anderson, D.R., Avery, R.I., Henderson, J.:
Some Fixed point theorems of Leggett-Williams type. Rocky Montain J. Math. 41 (2011), 371–386.
MR 2794444
[7] Anderson, D.R., Avery, R.I., Henderson, J.:
An extension of the compression-expansion fixed point theorem of functional type. Electron. J. Differential Equations 2016 (253) (2016), 1–9.
MR 3578274
[8] Anderson, D.R., Avery, R.I., Henderson, J., Liu, X.:
Operator type compression-expansion fixed point theorem. Electron. J. Differential Equations 2011 (2011), 1–11.
MR 2788661
[9] Anderson, D.R., Henderson, J., Avery, R.I.:
Functional compression-expansion fixed point theorem of Leggett-Williams type. Electron. J. Differential Equations 2010 (2010), 1–9.
MR 2651744
[10] Banas, J., Goebel, K.:
Measures of noncompactness in Banach spaces. Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York, 1980.
MR 0591679
[11] Djebali, S., Mebarki, K.:
Fixed point index theory for perturbation of expansive mappings by $k$-set contractions. Topol. Methods Nonlinear Anal. 54 (2A) (2019), 613–640.
MR 4061312
[12] Georgiev, S.G., Mebarki, K.:
On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs. Appl. Gen. Topol. 22 (2) (2021), 259–294.
DOI 10.4995/agt.2021.13248 |
MR 4359767
[13] Guo, D.:
A new fixed point theorem. Acta Math. Sinica 24 (3) (1981), 444–450.
MR 0634843
[14] Guo, D., Cho, Y.J., Zhu, J.:
Partial ordering methods in nonlinear problems. Shangdon Science and Technology Publishing Press, Shangdon, 1985.
MR 2084490
[15] Guo, D., Lakshmikantham, V.:
Nonlinear problems in abstract cones. vol. 5, Academic Press, Boston, Mass., USA, 1988.
MR 0959889 |
Zbl 0661.47045
[19] Leggett, R.W., Williams, L.R.:
Multiple positive fixed points of nonlinear operators on ordered Banach space. Indiana Univ. Math. J. 28 (4) (1979), 673–688.
DOI 10.1512/iumj.1979.28.28046 |
MR 0542951
[20] Lyons, J.W., Neugebauer, J.T.:
A difference equation with anti-periodic boundary conditions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (1) (2015), 47–60.
MR 3423259
[21] Mohamed, A.:
Existence of positive solutions for a fourth-order three-point BVP with sign-changing green’s function. Appl. Math. 12 (4) (2021), 311–321.
DOI 10.4236/am.2021.124022
[22] Neugebauer, J., Seelbach, C.: A difference equation with Dirichlet boundary conditions. Commun. Appl. Anal. 21 (2) (2017), 237–248.
[23] Neugebauer, J.T.: The role of symmetry and concavity in the existence of solutions of a difference equation with Dirichlet boundary conditions. Int. J. Difference Equ. 15 (2) (2020), 483–491.
[24] Tian, Y., Ma, D., Ge, W.:
Multiple positive solutions of four point boundary value problems for finite difference equations. J. Difference Equ. Appl. 12 (1) (2006), 57–68.
DOI 10.1080/10236190500376342 |
MR 2197585
[26] Zhang, H.E., Sun, J.P.:
A generalization of the Leggett-Williams fixed point theorem and its application. J. Appl. Math. Comput. 39 (1) (2012), 385–399.
DOI 10.1007/s12190-011-0531-y |
MR 2914482