Previous |  Up |  Next

Article

Keywords:
fixed point; sum of operators; non-autonomous difference equations; positive solution
Summary:
In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.
References:
[1] Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive solutions of differential, difference and integral equations. Springer Science and Business Media, 1998. MR 1680024
[2] Anderson, D.R., Avery, R.I.: Multiple positive solutions to a third-order discrete focal boundary value problem. Comput. Math. Appl. 42 (3–5) (2001), 333–340. DOI 10.1016/S0898-1221(01)00158-4 | MR 1837995
[3] Anderson, D.R., Avery, R.I.: Fixed point theorem of cone expansion and compression of functional type. J. Difference Equ. Appl. 8 (11) (2002), 1073–1083. DOI 10.1080/10236190290015344 | MR 1942442
[4] Anderson, D.R., Avery, R.I.: A topological proof and extension of the Leggett-Williams fixed point theorem. Commun. Appl. Nonlinear Anal. 16 (4) (2009), 39–44. MR 2591327
[5] Anderson, D.R., Avery, R.I.: Application of the omitted ray fixed point theorem. Electron. J. Qual. Theory Differ. Equ. 2014 (17) (2014), 1–9. DOI 10.14232/ejqtde.2014.1.17 | MR 3210547
[6] Anderson, D.R., Avery, R.I., Henderson, J.: Some Fixed point theorems of Leggett-Williams type. Rocky Montain J. Math. 41 (2011), 371–386. MR 2794444
[7] Anderson, D.R., Avery, R.I., Henderson, J.: An extension of the compression-expansion fixed point theorem of functional type. Electron. J. Differential Equations 2016 (253) (2016), 1–9. MR 3578274
[8] Anderson, D.R., Avery, R.I., Henderson, J., Liu, X.: Operator type compression-expansion fixed point theorem. Electron. J. Differential Equations 2011 (2011), 1–11. MR 2788661
[9] Anderson, D.R., Henderson, J., Avery, R.I.: Functional compression-expansion fixed point theorem of Leggett-Williams type. Electron. J. Differential Equations 2010 (2010), 1–9. MR 2651744
[10] Banas, J., Goebel, K.: Measures of noncompactness in Banach spaces. Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York, 1980. MR 0591679
[11] Djebali, S., Mebarki, K.: Fixed point index theory for perturbation of expansive mappings by $k$-set contractions. Topol. Methods Nonlinear Anal. 54 (2A) (2019), 613–640. MR 4061312
[12] Georgiev, S.G., Mebarki, K.: On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs. Appl. Gen. Topol. 22 (2) (2021), 259–294. DOI 10.4995/agt.2021.13248 | MR 4359767
[13] Guo, D.: A new fixed point theorem. Acta Math. Sinica 24 (3) (1981), 444–450. MR 0634843
[14] Guo, D., Cho, Y.J., Zhu, J.: Partial ordering methods in nonlinear problems. Shangdon Science and Technology Publishing Press, Shangdon, 1985. MR 2084490
[15] Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. vol. 5, Academic Press, Boston, Mass., USA, 1988. MR 0959889 | Zbl 0661.47045
[16] He, X., Ge, W.: Triple solutions for second-order three-point boundary value problems. J. Math. Anal. Appl. 268 (1) (2002), 256–265. DOI 10.1006/jmaa.2001.7824 | MR 1893205
[17] Henderson, J., Liu, X., Lyons, J.W., al., et: Right focal boundary value problems for difference equations. Opuscula Math. 30 (4) (2010), 447–456. DOI 10.7494/OpMath.2010.30.4.447 | MR 2726433
[18] Henderson, J., Thompson, H.: Multiple symmetric positive solutions for a second order boundary value problem. Proc. Amer. Math. Soc. 128 (8) (2000), 2373–2379. DOI 10.1090/S0002-9939-00-05644-6 | MR 1709753
[19] Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach space. Indiana Univ. Math. J. 28 (4) (1979), 673–688. DOI 10.1512/iumj.1979.28.28046 | MR 0542951
[20] Lyons, J.W., Neugebauer, J.T.: A difference equation with anti-periodic boundary conditions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (1) (2015), 47–60. MR 3423259
[21] Mohamed, A.: Existence of positive solutions for a fourth-order three-point BVP with sign-changing green’s function. Appl. Math. 12 (4) (2021), 311–321. DOI 10.4236/am.2021.124022
[22] Neugebauer, J., Seelbach, C.: A difference equation with Dirichlet boundary conditions. Commun. Appl. Anal. 21 (2) (2017), 237–248.
[23] Neugebauer, J.T.: The role of symmetry and concavity in the existence of solutions of a difference equation with Dirichlet boundary conditions. Int. J. Difference Equ. 15 (2) (2020), 483–491.
[24] Tian, Y., Ma, D., Ge, W.: Multiple positive solutions of four point boundary value problems for finite difference equations. J. Difference Equ. Appl. 12 (1) (2006), 57–68. DOI 10.1080/10236190500376342 | MR 2197585
[25] Yao, Q.L.: The existence and multiplicity of positive solutions for a third-order three-point boundary value problem. Acta Math. Appl. Sin. 19 (1) (2003), 117–122. DOI 10.1007/s10255-003-0087-1 | MR 2053778 | Zbl 1048.34031
[26] Zhang, H.E., Sun, J.P.: A generalization of the Leggett-Williams fixed point theorem and its application. J. Appl. Math. Comput. 39 (1) (2012), 385–399. DOI 10.1007/s12190-011-0531-y | MR 2914482
Partner of
EuDML logo