Previous |  Up |  Next

Article

Keywords:
numerical radius; inner product space; $C^*$-algebra
Summary:
We present a new method for studying the numerical radius of bounded operators on Hilbert $C^*$-modules. Our method enables us to obtain some new results and generalize some known theorems for bounded operators on Hilbert spaces to bounded adjointable operators on Hilbert $C^*$-module spaces.
References:
[1] Bhunia, P., Bag, S., Paul, K.: Numerical radius inequalities and its applications in estimation of zeros of polynomials. Linear Algebra Appl. 573 (2019), 166-177. DOI 10.1016/j.laa.2019.03.017 | MR 3933295 | Zbl 07060568
[2] Dragomir, S. S.: Some refinements of Schwarz inequality. Proceedings of the Simpozionul de Matematici si Aplicatii, Timisoara, Romania (1985), 13-16.
[3] Dragomir, S. S.: A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces. Banach J. Math. Anal. 1 (2007), 154-175. DOI 10.15352/bjma/1240336213 | MR 2366098 | Zbl 1136.47006
[4] Dragomir, S. S.: Inequalities for the norm and numerical radius of composite operator in Hilbert spaces. Inequalities and Applications International Series of Numerical Mathematics 157. Birkhäuser, Basel (2009), 135-146. DOI 10.1007/978-3-7643-8773-0_13 | MR 2758975 | Zbl 1266.26036
[5] Dragomir, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 5 (2009), 269-278. MR 2567758 | Zbl 1225.47008
[6] Goldberg, M., Tadmor, E.: On the numerical radius and its applications. Linear Algebra Appl. 42 (1982), 263-284. DOI 10.1016/0024-3795(82)90155-0 | MR 0656430 | Zbl 0479.47002
[7] Goldstein, A. A., Ryff, J. V., Clarke, L. E.: Problems and solutions: Solutions of advanced problems 5473. Am. Math. Mon. 75 (1968), 309-310. DOI 10.2307/2314992 | MR 1534789
[8] Gustafson, K. E., Rao, D. K. M.: Numerical Range: The Field of Values of Linear Operators and Matrices. Universitext. Springer, New York (1997). DOI 10.1007/978-1-4613-8498-4 | MR 1417493 | Zbl 0874.47003
[9] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). MR 0944909 | Zbl 0634.26008
[10] Hosseini, M. S., Omidvar, M. E., Moosavi, B., Moradi, H. R.: Some inequalities for the numerical radius for Hilbert $C^*$-modules space operators. Georgian Math. J. 28 (2021), 255-260. DOI 10.1515/gmj-2019-2053 | MR 4235824 | Zbl 07339609
[11] Kadison, R. V., Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras. Vol. 1. Elementary Theory. Pure and Applied Mathematics 100. Academic Press, New York (1983). MR 0719020 | Zbl 0518.46046
[12] Kaplansky, I.: Modules over operator algebras. Am. J. Math. 75 (1953), 839-858. DOI 10.2307/2372552 | MR 0058137 | Zbl 0051.09101
[13] Kittaneh, F.: Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. DOI 10.2977/prims/1195175202 | MR 0944864 | Zbl 0655.47009
[14] Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. Stud. Math. 168 (2005), 73-80. DOI 10.4064/sm168-1-5 | MR 2133388 | Zbl 1072.47004
[15] Lance, E. C.: Hilbert $C^*$-Module: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511526206 | MR 1325694 | Zbl 0822.46080
[16] McCarthy, C. A.: $C_p$. Isr. J. Math. 5 (1967), 249-271. DOI 10.1007/BF02771613 | MR 0225140 | Zbl 0156.37902
[17] Mehrazin, M., Amyari, M., Omidvar, M. E.: A new type of numerical radius of operators on Hilbert $C^*$-module. Rend. Circ. Mat. Palermo (2) 69 (2020), 29-37. DOI 10.1007/s12215-018-0385-3 | MR 4148774 | Zbl 07193605
[18] Mirmostafaee, A. K., Rahpeyma, O. P., Omidvar, M. E.: Numerical radius ineqalities for finite sums of operators. Demonstr. Math. 47 (2014), 963-970. DOI 10.2478/dema-2014-0076 | MR 3290398 | Zbl 1304.47007
[19] Moosavi, B., Hosseini, M. S.: Some inequalities for the numerical radius for operators in Hilbert $C^*$-modules space. J. Inequal. Spec. Funct. 10 (2019), 77-84. MR 4016178
[20] Murphy, G. J.: $C^*$-Algebras and Operator Theory. Academic Press, Boston (1990). MR 1074574 | Zbl 0714.46041
[21] Paschke, W. L.: Inner product modules over $B^*$-algebras. Trans. Am. Math. Soc. 182 (1973), 443-468. DOI 10.1090/S0002-9947-1973-0355613-0 | MR 0355613 | Zbl 0239.46062
[22] Rieffel, M. A.: Induced representations of $C^*$-algebras. Adv. Math. 13 (1974), 176-257. DOI 10.1016/0001-8708(74)90068-1 | MR 0353003 | Zbl 0284.46040
[23] Sattari, M., Moslehian, M. S., Yamazaki, T.: Some generalized numerical radius ineqalities for Hilbert space operators. Linear Algebra Appl. 470 (2015), 216-227. DOI 10.1016/j.laa.2014.08.003 | MR 3314313 | Zbl 1322.47010
[24] Yamazaki, T.: On upper and lower bounds of the numerical radius and an equality condition. Stud. Math. 178 (2007), 83-89. DOI 10.4064/sm178-1-5 | MR 2282491 | Zbl 1114.47003
Partner of
EuDML logo