[1] Belohlavek, R.: Fuzzy Relational Systems. Foundations and Principles. Academic Publishers, Kluwer New York 2002.
[2] Czogała, E., Drewniak, J., Pedrycz, W.:
Fuzzy relation equations on a finite set. Fuzzy Sets Systems 7 (1982), 89-101.
DOI |
MR 0635357
[3] Drewniak, J.:
Fuzzy relation equations and inequalities. Fuzzy Sets Systems 14 (1984), 237-247.
DOI |
MR 0768110
[4] Drewniak, J.:
Fuzzy Relation Calculus. Silesian University, Katowice 1989.
MR 1009161
[5] Drewniak, J., Matusiewicz, Z.:
Fuzzy equations $\max-\ast$ with conditionally cancellative operations. Inform. Sci. 206 (2012), 18-29.
DOI |
MR 2930162
[6] Fang, S. Ch., Li, G.:
Solving fuzzy relation equations with a linear objective function. Fuzzy Sets Systems 103 (1999), 107-113
MR 1674026 |
Zbl 0933.90069
[7] Guo, F., Pang, L.-P., Meng, D., Xia, Z.-Q.:
An algorithm for solving optimization problems with fuzzy relational inequality constraints. Inform. Sci. 252 (2011), 20-31.
DOI |
MR 3123917
[8] Guu, S.-M., Wu, Y. K.:
Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint. Fuzzy Sets Systems 161 (2010), 285-297.
DOI |
MR 2566245 |
Zbl 1190.90297
[9] Han, S. Ch., Li, H.-X., Wang, J.-Y.:
Resolution of finite fuzzy relation equations based on strong pseudo-$t$-norms. Appl. Math. Lett. 19 (2006), 752-757.
DOI |
MR 2232250
[11] Khorram, E., Zarei, H.:
Multi-objective optimization problems with fuzzy relation equation constraints regarding max-average composition. Math. Comput. Modell. 5 (2009), 49, 856-867.
DOI |
MR 2495003
[12] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[13] Lee, H.-C., Guu, S.-M.:
On the optimal three-tier multimedia streaming services. Fuzzy Optimization and Decision Making 2 (3) (2002), 31-39.
DOI
[14] Li, S.-Ch., Fang, P.:
A survey on fuzzy relational equations, part I: classification and solvability. Fuzzy Optim. Decision Making 8 (2009), 2, 179-229.
DOI |
MR 2511474
[15] Liu, Ch.-Ch., Lur, Y.-Y., Wu, Y.-K.:
Linear optimization of bipolar fuzzy relational equations with max-Lukasiewicz composition. Inform. Sci. 360 (2016), 149-162.
DOI
[16] Matusiewicz, Z., Drewniak, J.:
Increasing continuous operations in fuzzy $\max-\ast$ equations and inequalities. Fuzzy Sets Systems 231 (2013), 120-133.
DOI |
MR 3118539
[17] Molai, A. A.:
Fuzzy linear objective function optimization with fuzzy-valued max-product fuzzy relation inequality constraints. Math. Comput. Modell. 51 (2010), 9-10, 1240-1250.
DOI |
MR 2608910
[18] Peeva, K., Kyosev, Y.:
Fuzzy Relational Calculus: Theory, Applications and Software. Advanced Fuzzy Systems - Applications and Theory, World Scientific, Singapore 2004.
DOI |
MR 2379415 |
Zbl 1083.03048
[19] Qin, Z., Liu, X., Cao, B.-Y.:
Multi-level linear programming subject to max-product fuzzy relation equalities. In: International Workshop on Mathematics and Decision Science 2018.
DOI
[20] Qu, X., Wang, X.-P.:
Minimization of linear objective functions under the constraints expressed by a system of fuzzy relation equations. Inform. Sci. 178 (2008), 17, 3482-3490.
DOI |
MR 2436417
[21] Sanchez, E.:
Resolution of composite fuzzy relation equations. Inform. Control 30 (1976), 38-48.
DOI |
MR 0437410
[22] Shieh, B.-S.:
Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint. Inform. Sci. 161 (2011), 285-297.
DOI |
MR 2566245
[23] Xiao, G., Zhu, T.-X., Chen, Y., Yang, X.:
Linear Searching Method for Solving Approximate Solution to System of Max-Min Fuzzy Relation Equations With Application in the Instructional Information Resources Allocation. In: IEEE Access 7 (2019), 65019-65028.
DOI
[24] Yang, X.-P., Zhou, X.-G., Cao, B.-Y.:
Latticized linear programming subject to max-product fuzzy relation inequalities with application in wireless communication. Inform. Sci. 358(C) (2016), 44-55.
DOI
[25] Zadeh, L. A.:
Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177-200.
DOI |
MR 0297650
[26] Zhou, X.-G., Yang, X.-P., Cao, B.-Y.:
Posynomial geometric programming problem subject to max–min fuzzy relation equations. Inform. Sci. 328 (2016), 15-25.
DOI