Previous |  Up |  Next

Article

Keywords:
heat-convection; variational inequality; mixed boundary conditions; Tresca slip; leak boundary conditions; one-sided leak; pressure boundary condition; existence and uniqueness
Summary:
In this paper we are concerned with the steady Boussinesq system with mixed boundary conditions. The boundary conditions for fluid may include Tresca slip, leak, one-sided leak, velocity, vorticity, pressure and stress conditions together and the conditions for temperature may include Dirichlet, Neumann and Robin conditions together. For the problem involving the static pressure and stress boundary conditions, it is proved that if the data of the problem are small enough, then there exists a solution and the solution with small norm is unique. For the problem involving the total pressure and total stress boundary conditions, the existence of a solution is proved without smallness of the data.
References:
[1] Acevedo, P., Amrouche, C., Conca, C.: Boussinesq system with non-homogeneous boundary conditions. Appl. Math. Lett. 53 (2016), 39-44 \99999DOI99999 10.1016/j.aml.2015.09.015 . DOI 10.1016/j.aml.2015.09.015 | MR 3426553 | Zbl 1333.35175
[2] Alekseev, G. V., Smishliaev, A. B.: Solvability of the boundary-value problems for Boussinesq equations with inhomogeneous boundary conditions. J. Math. Fluid Mech. 3 (2001), 18-39 \99999DOI99999 10.1007/PL00000962 . MR 1830653 | Zbl 0989.35106
[3] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, Berlin (2010). DOI 10.1007/978-1-4419-5542-5 | MR 2582280 | Zbl 1197.35002
[4] Chebotarev, A. Y.: Variational inequalities for Navier-Stokes type operators and one-sided problems for equations of viscous heat-conducting fluids. Math. Notes 70 (2001), 264-274. DOI 10.1023/A:1010267111548 | MR 1882418 | Zbl 1140.35548
[5] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien. II. Abteilung 38. Academie, Berlin (1974), German. MR 0636412 | Zbl 0289.47029
[6] Kim, H.: The existence and uniqueness of very weak solutions of the stationary Boussinesq system. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 317-330 \99999DOI99999 10.1016/j.na.2011.08.035 . MR 2846803 | Zbl 1229.35209
[7] Kim, T., Cao, D.: Some properties on the surfaces of vector fields and its application to the Stokes and Navier-Stokes problems with mixed boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 113 (2015), 94-114. DOI 10.1016/j.na.2014.09.017 | MR 3281848 | Zbl 1304.35551
[8] Kim, T., Cao, D.: The steady Navier-Stokes and Stokes systems with mixed boundary conditions including one-sided leaks and pressure. Methods Appl. Anal. 23 (2016), 329-364. DOI 10.4310/MAA.2016.v23.n4.a3 | MR 3633953 | Zbl 1372.35116
[9] Kim, T., Cao, D.: Mixed boundary value problems of the system for steady flow of heat-conducting incompressible viscous fluids with dissipative heating. Methods Appl. Anal. 27 (2020), 87-124. DOI 10.4310/MAA.2020.v27.n2.a1 | MR 4143709 | Zbl 1448.35241
[10] Kovtunov, D. A.: Solvability of the stationary heat convection problem for a high-viscosity fluid. Differ. Equ. 45 (2009), 73-85. DOI 10.1134/S0012266109010091 | MR 2597096 | Zbl 1176.35137
[11] Morimoto, H.: On the existence of weak solutions of equations of natural convection. J. Fac. Sci., Univ. Tokyo, Sect. I A 36 (1989), 87-102 \99999MR99999 991021 . MR 0991021 | Zbl 0676.76079
[12] Morimoto, H.: On the existence and uniqueness of the stationary solution to the equation of natural convection. Tokyo J. Math. 14 (1991), 217-226. DOI 10.3836/tjm/1270130501 | MR 1108168 | Zbl 0739.35074
[13] Morimoto, H.: Heat convection equation with nonhomogeneous boundary conditions. Funkc. Ekvacioj, Ser. Int. 53 (2010), 213-229. DOI 10.1619/fesi.53.213 | MR 2730621 | Zbl 1205.35315
[14] Naumann, J., Pokorný, M., Wolf, J.: On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating. Nonlinear Anal., Real World Appl. 13 (2012), 1600-1620. DOI 10.1016/j.nonrwa.2011.11.018 | MR 2890996 | Zbl 1254.76048
[15] Villamizar-Roa, E. J., Rodríguez-Bellido, M. A., Rojas-Medar, M. A.: The Boussinesq system with mixed nonsmooth boundary data. C. R., Math., Acad. Sci. Paris 343 (2006), 191-196. DOI 10.1016/j.crma.2006.06.011 | MR 2246338 | Zbl 1102.35031
Partner of
EuDML logo