[1] Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau:
Li-Yau inequality on graphs. J. Differential Geom. 99 (3) (2015), 359–405.
DOI 10.4310/jdg/1424880980 |
MR 3316971
[2] Chavel, I., Karp, L.:
Large time behavior of the heat kernel: the parabolic-potential alternative. Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664.
DOI 10.1007/BF02566664 |
MR 1129796
[3] Chung, F.R.K.:
Spectral graph theory. CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8.
MR 1421568
[4] Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.:
Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2 (4) (2012), 397–432.
DOI 10.4171/JST/35 |
MR 2947294
[5] Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau:
Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. arXiv:1411. 5087v4.
MR 4036571
[7] Keller, M., Lenz, D.:
Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5 (4) (2010), 198–224.
DOI 10.1051/mmnp/20105409 |
MR 2662456
[8] Lin, Y., Liu, S.:
Equivalent properties of CD inequality on grap. arXiv:1512.02677, 2015.
MR 4545901
[10] Ma, L.:
Harnack’s inequality and Green’s functions on locally finite graphs. Nonlinear Anal. 170 (2018), 226–237.
MR 3765562