Previous |  Up |  Next

Article

Keywords:
Bochner formula; heat equation; global solution; stochastic completeness; porous-media equation; McKean type estimate
Summary:
In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph. There is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs.
References:
[1] Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau: Li-Yau inequality on graphs. J. Differential Geom. 99 (3) (2015), 359–405. DOI 10.4310/jdg/1424880980 | MR 3316971
[2] Chavel, I., Karp, L.: Large time behavior of the heat kernel: the parabolic-potential alternative. Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664. DOI 10.1007/BF02566664 | MR 1129796
[3] Chung, F.R.K.: Spectral graph theory. CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8. MR 1421568
[4] Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2 (4) (2012), 397–432. DOI 10.4171/JST/35 | MR 2947294
[5] Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau: Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs. arXiv:1411. 5087v4. MR 4036571
[6] Ji, L., Mazzeo, R., Sesum, N.: Ricci flow on surfaces with cusps. Math. Ann. 345 (2009), 819–834. DOI 10.1007/s00208-009-0377-x | MR 2545867
[7] Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5 (4) (2010), 198–224. DOI 10.1051/mmnp/20105409 | MR 2662456
[8] Lin, Y., Liu, S.: Equivalent properties of CD inequality on grap. arXiv:1512.02677, 2015. MR 4545901
[9] Lin, Y., Yau, S.T.: Ricci curvature and eigen-value estimate on locally finite graphs. Math. Res. Lett. 17 (2010), 343–356. DOI 10.4310/MRL.2010.v17.n2.a13 | MR 2644381
[10] Ma, L.: Harnack’s inequality and Green’s functions on locally finite graphs. Nonlinear Anal. 170 (2018), 226–237. MR 3765562
[11] Ma, L., Wang, X.Y.: Kato’s inequality and Liouville theorems on locally finite graphs. Sci. China Math. 56 (4) (2013), 771–776. DOI 10.1007/s11425-013-4577-1 | MR 3034839
[12] Ma, L., Witt, I.: Discrete Morse flow for the Ricci flow and porous media equation. Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158–164. DOI 10.1016/j.cnsns.2017.11.002 | MR 3758379
[13] Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370 (1) (2010), 146–158. DOI 10.1016/j.jmaa.2010.04.044 | MR 2651136
[14] Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58 (3) (2009), 1419–1441. DOI 10.1512/iumj.2009.58.3575 | MR 2542093
Partner of
EuDML logo