[1] Begovic, M., Novosel, D., Karlsson, D., Henvill, C., Michel, G.:
Wide-area protection and emergency control. Proc. T. IEEE 93 (2005), 876-891.
DOI
[2] Bi, R., Lin, T., Chen, R., Ye, J., Zhou, X., Xu, X.:
Alleviation of post-contingency overloads by SOCP based corrective control considering TCSC and MTDC. IET Gener. Transmiss. Distr. 12 (2018), 2155-2164.
DOI
[3] Bie, Z., Lin, Y., Li, G., Li, F.:
Battling the extreme: A study on the power system resilience. Proc. T. IEEE 105 (2017), 1253-1566.
DOI
[4] Biswas, S., Nayak, K. P.:
A new approach for protecting TCSC compensated transmission lines connected to DFIG-based wind farm. IEEE Trans. Industr. Inform. 17 (2021), 5282-5291.
DOI
[5] Bruno, S., De, G., La, M.:
Transmission grid control through TCSC dynamic series compensation. IEEE Trans. Power Syst. 31 (2016), 3202-3211.
DOI
[6] Chang, L., Liu, Y., Jing, Y., Chen, X., Qiu, J.:
Semi-globally practical finite-time ${H}_{\infty}$ control of TCSC model of power systems based on dynamic surface control. IEEE Access. 8 (2020), 10061-10069.
DOI
[7] Chen, Z., Shu, L.:
Distributed aggregative optimization with quantized communication. Kybernetika 58 (2022), 123-144.
DOI |
MR 4405950
[8] Chen, Y., Wang, J., Domínguez-García, A. D., Sauer, P. W.:
Measurement-based estimation of the power flow Jacobian matrix. IEEE Trans. Smart Grid 7 (2015), 2507-2515.
DOI
[9] Duong, T., Yao, J., Truong, V.:
A new method for secured optimal power flow under normal and network contingencies via optimal location of TCSC. Int. J. Electr. Power Energy Syst. 52 (2013), 68-80.
DOI
[10] Durković, V., Savić, A.:
ATC enhancement using TCSC device regarding uncertainty of realization one of two simultaneous transactions. Int. J. Electr Power Energy Syst. 115 (2020), 105497.
DOI
[11] Halder, A., Pal, N., Mondal, D.:
Transient stability analysis of a multimachine power system with TCSC controller - A zero dynamic design approach. Int. J. Electr Power Energy Syst. 97 (2018), 51-71.
DOI
[12] Hameed, S., Das, B., Pant, V.:
A self-tuning fuzzy PI controller for TCSC to improve power system stability. Electr. Pow. Syst. Res. 78 (2008), 1726-1735.
DOI
[13] Hemmati, R., Faraji, H., Beigvand, Y. N.:
Multi objective control scheme on DFIG wind turbine integrated with energy storage system and FACTS devices: Steady-state and transient operation improvement. Int. J. Electr. Power Energy Syst. 135 (2022), 107519.
DOI
[14] Hu, J.:
On Robust Consensus of Multi-Agent Systems with Communication Delays Volume. Kybernetika 45 (2009), 768-784.
MR 2599111
[15] Hu, J., Chen, G., Li, H.:
Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 630-643.
MR 2884865 |
Zbl 1227.93008
[16] Liu, Y., Wu, Q., Zhou, X.:
Coordinated switching controllers for transient stability of multi-machine power systems. IEEE Trans. Power Syst. 31 (2016), 3937-3949.
DOI |
MR 3160171
[17] Luo, Y., Zhao, S., Yang, D., Zhang, H.:
A new robust adaptive neural network backstepping control for single machine infinite power system with TCSC. IEEE/CAA J. Automat. Sinica 7 (2020), 48-56.
DOI |
MR 4058071
[18] Kumar, H., Singh, P.:
Coordinated control of TCSC and UPFC to aid damping oscillations in the power system. Int. J. Electron. 106 (2019), 1938-1963.
DOI
[19] Nguyen, T., Mohammadi, F.:
Optimal placement of TCSC for congestion management and power loss reduction using multi-objective genetic algorithm. Sustainability 12 (2020), 2813.
DOI
[20] Panteli, M., Mancarella, P.:
The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience. IEEE Pow. Energy Mag. 13 (2015), 58-66.
DOI
[21] Prakash, T., Singh, P. V., Mohanty, S. R.:
A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable time-delays. Int. J. Electr Power Energy Syst. 105 (2019), 131-141.
DOI
[22] Rocchetta, R., Patelli, E.:
Assessment of power grid vulnerabilities accounting for stochastic loads and model imprecision. Int. J. Electr. Power Energy Syst. 98 (2018), 219-232.
DOI
[23] Rosso, A., Canizares, C. A., Dona, V. M.:
A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst. 18 (2003), 1487-1496.
DOI
[24] Shafik, B., Chen, H., Rashed, I., Sehiemy, A.:
Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework. IEEE Access. 7 (2019), 36934-36947.
DOI
[25] Terzija, V., Valverde, G., D, P, Cai., Regulski, Madani, V., Fitch, J., Skok, S., Begovic, M., Phadke, A.:
Wide-area monitoring, protection, and control of future electric power networks. Proc. T. IEEE 99 (2011), 80-93.
DOI
[26] Xu, J., Yao, R., Qiu, F.:
Mitigating cascading outages in severe weather using simulation-based optimization. IEEE Trans. Power Syst. 39 (2021), 204-213.
DOI
[27] Zhai, C., Xiao, G., Meng, M., Zhang, H., Li, B.:
Identification of catastrophic cascading failures in protected power grids using optimal control. J. Energ. Engrg. 147 (2021), 6020001.
DOI
[28] Zhai, C., Xiao, G., Zhang, H., Wang, P., Pan, T.:
Identifying disruptive contingencies for catastrophic cascading failures in power systems. Int. J. Electr. Power Energy Syst. 123 (2020), 106214.
DOI
[29] Zhai, C., Hong, Y.:
Decentralized sweep coverage algorithm for multi-agent systems with workload uncertainties. Automatica 49 (2013), 2154-2159.
DOI |
MR 3063071
[30] Zhai, C., Xiao, G., Zhang, H., Pan, T.:
Cooperative control of TCSC to relieve the stress of cyber-physical power system. In: International Conference on Control, Automation, Robotics and Vision 2018, pp. 4849-4854.
DOI
[31] Zhai, C., Zhang, H., Xiao, G., Pan, T.:
A model predictive approach to protect power systems against cascading blackouts. Int. J. Electr. Power Energy Syst. 113 (2019), 310-321.
DOI
[32] Zhang, C., Wang, X., Ming, Z., Cai, Z., Linh, H.:
Enhanced nonlinear robust control for TCSC in power system. Math. Probl. Eng. 2018 (2018), 1416059.
DOI |
MR 3804892