Previous |  Up |  Next

Article

Title: Linear operator identities in quasigroups (English)
Author: Akhtar, Reza
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 1
Year: 2022
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: We study identities of the form $$ L_{x_0} \varphi_1 \cdots \varphi_n R_{x_{n+1}} = R_{x_{n+1}} \varphi_{\sigma(1)} \cdots \varphi_{\sigma(n)} L_{x_0} $$ in quasigroups, where $n \geq 1$, $\sigma$ is a permutation of $\{1, \ldots, n\}$, and for each $i$, $\varphi_i$ is either $L_{x_i}$ or $R_{x_i}$. We prove that in a quasigroup, every such identity implies commutativity. Moreover, if $\sigma$ is chosen randomly and uniformly, it also satisfies associativity with probability approaching $1$ as $n \rightarrow \infty$. (English)
Keyword: quasigroup
Keyword: linear identity
Keyword: associativity
Keyword: commutativity
MSC: 05C78
idZBL: Zbl 07584109
idMR: MR4445733
DOI: 10.14712/1213-7243.2022.010
.
Date available: 2022-07-18T11:45:29Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150427
.
Reference: [1] Akhtar R.: On generalized associativity in groupoids.Quasigroups Related Systems 24 (2016), no. 1, 1–6. MR 3506153
Reference: [2] Akhtar R.: Symmetric linear operator identities in quasigroups.Comment. Math. Univ. Carolin. 58 (2017), no. 4, 401–417. MR 3737114
Reference: [3] Akhtar R., Arp A., Kaminski M., Van Exel J., Vernon D., Washington C.: The varieties of Bol–Moufang quasigroups defined by a single operation.Quasigroups Related Systems 20 (2012), no. 1, 1–10. MR 3013362
Reference: [4] Belousov V. D.: Systems of quasigroups with generalized identities.Uspehi Mat. Nauk 20 (1965), no. 1 (121), 75–146 (Russian). Zbl 0135.03503, MR 0173724
Reference: [5] Krapež A.: Generalized linear functional equations on almost quasigroups. I. Equations with at most two variables.Aequationes Math. 61 (2001), no. 3, 255–280. Zbl 0993.39022, MR 1833145, 10.1007/s000100050177
Reference: [6] Krapež A.: Quadratic level quasigroup equations with four variables. I.Publ. Inst. Math. (Beograd) (N.S.) 81 (95) (2007), 53–67. Zbl 1229.39035, MR 2401314, 10.2298/PIM0795053K
Reference: [7] Krapež A.: Quadratic level quasigroup equations with four variables. II: The lattice of varieties.Publ. Inst. Math. (Beograd) (N.S.) 93 (107) (2013), 29–47. MR 3089075, 10.2298/PIM1307029K
Reference: [8] Niemenmaa M., Kepka T.: On a general associativity law in groupoids.Monatsh. Math. 113 (1992), no. 1, 51–57. Zbl 0768.20032, MR 1149060, 10.1007/BF01299305
Reference: [9] Pflugfelder H.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [10] Phillips J. D., Vojtěchovský P.: The varieties of loops of Bol–Moufang type.Algebra Universalis 54 (2005), no. 3, 259–271. MR 2219409, 10.1007/s00012-005-1941-1
Reference: [11] Phillips J. D., Vojtěchovský P.: The varieties of quasigroups of Bol–Moufang type: an equational reasoning approach.J. Algebra 293 (2005), no. 1, 17–33. MR 2173964, 10.1016/j.jalgebra.2005.07.011
Reference: [12] Robbins H.: A remark on Stirling's formula.Amer. Math. Monthly 62 (1955), 26–29. MR 0069328, 10.2307/2308012
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-1_1.pdf 201.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo