Previous |  Up |  Next

Article

Keywords:
oscillation; quasilinear difference equation; delay and advanced neutral terms
Summary:
We obtain some new sufficient conditions for the oscillation of the solutions of the second-order quasilinear difference equations with delay and advanced neutral terms. The results established in this paper are applicable to equations whose neutral coefficients are unbounded. Thus, the results obtained here are new and complement some known results reported in the literature. Examples are also given to illustrate the applicability and strength of the obtained conditions over the known ones.
References:
[1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications. Pure and Applied Mathematics, Marcel Dekker 228. Marcel Dekker, New York (2000). DOI 10.1201/9781420027020 | MR 1740241 | Zbl 0952.39001
[2] Agarwal, R. P., Bohner, M., Grace, S. R., O'Regan, D.: Discrete Oscillation Theory. Hindawi Publishing, New York (2005). DOI 10.1155/9789775945198 | MR 2179948 | Zbl 1084.39001
[3] Agarwal, R. P., Grace, S. R., n-Bohner, E. Akı: On the oscillation of higher order neutral difference equations of mixed type. Dyn. Syst. Appl. 11 (2002), 459-469. MR 1946136 | Zbl 1046.39001
[4] Chatzarakis, G. E., Miliaras, G. N.: Asymptotic behavior in neutral difference equations with several retarded arguments. Rocky Mt. J. Math. 45 (2015), 131-156. DOI 10.1216/RMJ-2015-45-1-131 | MR 3334206 | Zbl 1312.39018
[5] Chatzarakis, G. E., Miliaras, G. N., Stavroulakis, I. P., Thandapani, E.: Asymptotic behaviour of non-oscillatory solutions of first-order neutral difference equations. Panam. Math. J. 23 (2013), 111-129. MR 3075268 | Zbl 1280.39005
[6] Grace, S. R.: Oscillation of certain neutral difference equations of mixed type. J. Math. Anal. Appl. 224 (1998), 241-254. DOI 10.1006/jmaa.1998.6001 | MR 1637453 | Zbl 0911.39006
[7] Grace, S. R., Alzabut, J.: Oscillation results for nonlinear second order difference equations with mixed neutral terms. Adv. Difference Equ. 2020 (2020), Article ID 8, 12 pages. DOI 10.1186/s13662-019-2472-y | MR 4048362
[8] Grace, S. R., Dontha, S.: Oscillation of higher order neutral difference equations of mixed type. Dyn. Syst. Appl. 12 (2003), 521-532. MR 2020481 | Zbl 1054.39004
[9] Jiang, J.: Oscillation of second order nonlinear neutral delay difference equations. Appl. Math. Comput. 146 (2003), 791-801. DOI 10.1016/S0096-3003(02)00631-8 | MR 2008588 | Zbl 1035.34074
[10] Saker, S. H.: New oscillation criteria for second-order nonlinear neutral delay difference equations. Appl. Math. Comput. 142 (2003), 99-111. DOI 10.1016/S0096-3003(02)00286-2 | MR 1978250 | Zbl 1028.39003
[11] Seghar, D., Thandapani, E., Pinelas, S.: Some new oscillation theorems for second order difference equations with mixed neutral terms. Br. J. Math. Comput. Sci. 8 (2015), 121-133. DOI 10.9734/BJMCS/2015/16079 | MR 3431692
[12] Selvarangam, S., Geetha, S., Thandapani, E., Pinelas, S.: Classification of solutions of second order nonlinear neutral difference equations of mixed type. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 23 (2016), 433-447. Zbl 1355.39017
[13] Selvarangam, S., Thandapani, E., Pinelas, S.: Oscillation theorems for second order nonlinear neutral difference equations. J. Inequal. Appl. 2014 (2014), Article ID 417, 15 pages. DOI 10.1186/1029-242X-2014-417 | MR 3347707 | Zbl 1332.39005
[14] Sun, Y. G., Saker, S. H.: Oscillation for second-order nonlinear neutral delay difference equations. Appl. Math. Comput. 163 (2005), 909-918. DOI 10.1016/j.amc.2004.04.017 | MR 2121836 | Zbl 1078.39014
[15] Thandapani, E., Balasubramanian, V.: Oscillation and asymptotic behavior of second order nonlinear neutral difference equations of mixed arguments. Transylv. J. Math. Mech. 5 (2013), 149-156. MR 3158542
[16] Thandapani, E., Balasubramanian, V.: Some oscillation results for second order neutral type difference equations. Differ. Equ. Appl. 3 (2013), 319-330. DOI 10.7153/dea-05-19 | MR 3136342 | Zbl 1284.39012
[17] Thandapani, E., Balasubramanian, V.: Some oscillation theorems for second order nonlinear neutral type difference equations. Malaya J. Mat. 3 (2013), 34-43. MR 3136342 | Zbl 1369.39009
[18] Thandapani, E., Kavitha, N.: Oscillation theorems for second-order nonlinear neutral difference equation of mixed type. J. Math. Comput. Sci. 1 (2011), 89-102. MR 2913381
[19] Thandapani, E., Kavitha, N., Pinelas, S.: Comparison and oscillation theorem for second-order nonlinear neutral difference equations of mixed type. Dyn. Syst. Appl. 21 (2012), 83-92. MR 2953239 | Zbl 1280.39010
[20] Thandapani, E., Kavitha, N., Pinelas, S.: Oscillation criteria for second-order nonlinear neutral difference equations of mixed type. Adv. Difference Equ. 2012 (2012), Article ID 4, 10 pages. DOI 10.1186/1687-1847-2012-4 | MR 2897466 | Zbl 1278.39016
[21] Thandapani, E., Mahalingam, K.: Necessary and sufficient conditions for oscillation of second order neutral difference equations. Tamkang J. Math. 34 (2003), 137-145. DOI 10.5556/j.tkjm.34.2003.260 | MR 1976332 | Zbl 1044.39016
[22] Thandapani, E., Mahalingam, K.: Oscillation and nonoscillation of second order neutral delay difference equations. Czech. Math. J. 53 (2003), 935-947. DOI 10.1023/B:CMAJ.0000024532.03496.b2 | MR 2018841 | Zbl 1080.39503
[23] Thandapani, E., Seghar, D., Selvarangam, S.: Oscillation of second order quasilinear difference equations with several neutral terms. Transylv. J. Math. Mech. 7 (2015), 67-74. MR 3373908 | Zbl 1345.39003
[24] Thandapani, E., Selvarangam, S.: Oscillation theorems for second order quasilinear neutral difference equations. J. Math. Comput. Sci. 2 (2012), 866-879. MR 2947156
[25] Thandapani, E., Selvarangam, S.: Oscillation of solutions of second order neutral type difference equations. Nonlinear Funct. Anal. Appl. 20 (2015), 329-336. Zbl 1341.39003
[26] Thandapani, E., Sundaram, P., Gyori, I.: Oscillation of second order nonlinear neutral delay difference equations. J. Math. Phys. Sci. 31 (1997), 121-132. MR 1867518
[27] Wang, D.-M., Xu, Z.-T.: Oscillation of second-order quasilinear neutral delay difference equations. Acta Math. Appl. Sin., Engl. Ser. 27 (2011), 93-104. DOI 10.1007/s10255-011-0043-4 | MR 2754764 | Zbl 1242.39021
[28] Zhang, S.-Y., Wang, Q.-R.: Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 216 (2010), 2837-2848. DOI 10.1016/j.amc.2010.03.134 | MR 2653099 | Zbl 1218.34112
Partner of
EuDML logo