Previous |  Up |  Next

Article

Keywords:
linear system; iterative method; $K$-nonnegativity; double splitting; convergence theorem; comparison theorem
Summary:
Recently, Wang (2017) has introduced the $K$-nonnegative double splitting using the notion of matrices that leave a cone $K\subseteq \mathbb {R}^{n}$ invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for $K$-weak regular and $K$-nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory for these sub-classes of matrices. We then obtain the comparison results for two double splittings of a $K$-monotone matrix. Most of these results are completely new even for $K= \mathbb {R}^{n}_+$. The convergence behavior is discussed by performing numerical experiments for different matrices derived from the discretized Poisson equation.
References:
[1] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). DOI 10.1137/1.9781611971262 | MR 1298430 | Zbl 0815.15016
[2] Climent, J.-J., Perea, C.: Some comparison theorems for weak nonnegative splittings of bounded operators. Linear Algebra Appl. 275-276 (1998), 77-106. DOI 10.1016/S0024-3795(97)10065-9 | MR 1628383 | Zbl 0936.65063
[3] Climent, J.-J., Perea, C.: Comparison theorems for weak nonnegative splittings of $K$-monotone matrices. Electron. J. Linear Algebra 5 (1999), 24-38. DOI 10.13001/1081-3810.1029 | MR 1668923 | Zbl 0919.65023
[4] Climent, J.-J., Perea, C.: Comparison theorems for weak splittings in respect to a proper cone of nonsingular matrices. Linear Algebra Appl. 302-303 (1999), 355-366. DOI 10.1016/S0024-3795(99)00158-5 | MR 1733540 | Zbl 0948.65030
[5] Collatz, L.: Functional Analysis and Numerical Mathematics. Academic Press, New York (1966). MR 0205126 | Zbl 0148.39002
[6] Golub, G. H., Loan, C. F. Van: Matrix Computations. The John Hopkins University Press, Baltimore (1996). MR 1417720 | Zbl 0865.65009
[7] Golub, G. H., Varga, R. S.: Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods I. Numer. Math. 3 (1961), 147-156. DOI 10.1007/BF01386013 | MR 145678 | Zbl 0099.10903
[8] Hou, G.: Comparison theorems for double splittings of $K$-monotone matrices. Appl. Math. Comput. 244 (2014), 382-389. DOI 10.1016/j.amc.2014.06.101 | MR 3250585 | Zbl 1335.15015
[9] Marek, I., Szyld, D. B.: Comparison theorems for weak splittings of bounded operators. Numer. Math. 58 (1990), 389-397. DOI 10.1007/BF01385632 | MR 1077585 | Zbl 0694.65023
[10] Miao, S.-X., Zheng, B.: A note on double splittings of different monotone matrices. Calcolo 46 (2009), 261-266. DOI 10.1007/s10092-009-0011-z | MR 2563785 | Zbl 1185.65058
[11] Nandi, A. K., Shekhar, V., Mishra, N., Mishra, D.: Alternating stationary iterative methods based on double splittings. Comput. Math. Appl. 89 (2021), 87-98. DOI 10.1016/j.camwa.2021.02.015 | MR 4233331 | Zbl 7336184
[12] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003). DOI 10.1137/1.9780898718003 | MR 1990645 | Zbl 1031.65046
[13] Shekhar, V., Giri, C. K., Mishra, D.: A note on double weak splittings of type II. (to appear) in Linear Multilinear Algebra. DOI 10.1080/03081087.2020.1795057
[14] Shen, S.-Q., Huang, T.-Z.: Convergence and comparison theorems for double splittings of matrices. Comput. Math. Appl. 51 (2006), 1751-1760. DOI 10.1016/j.camwa.2006.02.006 | MR 2245703 | Zbl 1134.65341
[15] Shen, S.-Q., Huang, T.-Z., Shao, J.-L.: Convergence and comparison results for double splittings of Hermitian positive definite matrices. Calcolo 44 (2007), 127-135. DOI 10.1007/s10092-007-0132-1 | MR 2352718 | Zbl 1150.65008
[16] Song, Y.: Comparison theorems for splittings of matrices. Numer. Math. 92 (2002), 563-591. DOI 10.1007/s002110100333 | MR 1930390 | Zbl 1012.65028
[17] Song, J., Song, Y.: Convergence for nonnegative double splittings of matrices. Calcolo 48 (2011), 245-260. DOI 10.1007/s10092-010-0037-2 | MR 2827007 | Zbl 1232.65056
[18] Wang, C.: Comparison results for $K$-nonnegative double splittings of $K$-monotone matrices. Calcolo 54 (2017), 1293-1303. DOI 10.1007/s10092-017-0230-7 | MR 3735816 | Zbl 1385.65028
[19] Woźnicki, Z. I.: Estimation of the optimum relaxation factors in partial factorization iterative methods. SIAM J. Matrix Anal. Appl. 14 (1993), 59-73. DOI 10.1137/0614005 | MR 1199544 | Zbl 0767.65025
Partner of
EuDML logo