Previous |  Up |  Next

Article

Keywords:
$T$-power based implications; $T$-conditionality; t-norms; generalized modus ponens
Summary:
It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of $T$-conditionality. In this paper, the $T$-conditionality for $T$-power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication $I^{T}$ being $T$-conditional are obtained. Moreover, the sufficient conditions under which a power based implication $I^{T}$ is $T^{\ast}$-conditional are discussed, this discussions give an ideas to construct a t-norm $T^{\ast}$ such that the power based implication $I^{T}$ is $T^{\ast}$-conditional.
References:
[1] Alsina, C., Trillas, E.: When ($S, N$)-implications are ($T , T_{1}$)-conditional functions ?. Fuzzy Sets Systems 134 (2003), 305-310. DOI  | MR 1969106
[2] Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W.: Fuzzy implications based on semicopulas. Fuzzy Sets Systems 323 (2017), 138-151. DOI  | MR 3660830
[3] Baczyński, M., Jayaram, B.: Fuzzy Implications, Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg 2008. MR 2428086
[4] Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg 2013. MR 3024762
[5] Bustince, H., Pagola, M., Barrenechea, E.: Construction of fuzzy indices from fuzzy DI-subsethood measures: application to the global comparison of images. Inform. Sci. 177 (2007), 906-929. DOI  | MR 2287148
[6] Clouaire, R. M.: A fast generalized modus ponens. BUSEFAL 18 (1984), 75-82. DOI 
[7] Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin, Heidelberg 1993.
[8] Fodor, J. C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support, Theory and Decision Library, Serie D: System Theory, Knowledge Engineering and Problem Solving. Kluwer Academic Publishers, Dordrecht 1994.
[9] Grzegorzewski, P.: Probabilistic implications. Fuzzy Sets Systems 226 (2013), 53-66. DOI  | MR 3068353
[10] Hellendoorn, H.: The generalized modus ponens considered as a fuzzy relation. Fuzzy Sets and Systems 46 (1992), 29-48. DOI  | MR 1153590
[11] Hilletofth, P., Sequeira, M., Adlemo, A.: Three novel fuzzy logic concepts applied to reshoring decision-making. Expert Systems Appl. 126 (2019), 133-143. DOI 
[12] Ivánek, J.: Selection and correction of weighted rules based on lukasiewicz's fuzzy logic with evaluated syntax. Kybernetika 53 (2017), 113-128. DOI  | MR 3638559
[13] Kerre, E., Nachtegael, M.: Fuzzy Techniques in Image Processing. Springer, New York 2000.
[14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[15] Kolesárová, A., Massanet, S., Mesiar, R., Riera, J. V., Torrens, J.: Polynomial constructions of fuzzy implication functions: The quadratic case. Inform. Sci. 494 (2019), 60-79. DOI  | MR 3888811
[16] Li, W. H., Qin, F., Xie, A. F.: Modus Ponens property of $T$-power based implications. Fuzzy Sets Systems 431 (2022), 129-142. DOI  | MR 4379860
[17] Mas, M., Monserrat, M., Torrens, J.: Modus Ponens and Modus Tollens in discrete implications. Int. J. Approx. Reasoning 49 (2008), 422-435. DOI  | MR 2460278
[18] Massanet, S., Recasens, J., Torrens, J.: Fuzzy implication functions based on powers of continuous t-norms. Int. J. Approx. Reasoning 83 (2017), 265-279. DOI  | MR 3614257
[19] Massanet, S., Recasens, J., Torrens, J.: Corrigendum to "Fuzzy implication functions based on powers of continuous t-norms" [Int. J. Approx. Reason. 83 (2017) 265-279]. Int. J. Approx. Reasoning 104 (2019), 144-147. DOI  | MR 3876214
[20] Massanet, S., Recasens, J., Torrens, J.: Some characterizations of $T$-power based implications. Fuzzy Sets Systems 359 (2019), 42-62. DOI  | MR 3913077
[21] Mizumoto, M., Zimmermann, H. J.: Comparison of fuzzy reasoning methods. Fuzzy Sets Systtems 8 (1982), 253-283. DOI  | MR 0669417
[22] Peralta, R. F., Massanet, S., Mir, A.: On strict $T$-power invariant implications: Properties and intersections. Fuzzy Sets Systems 423 (2021), 1-28. DOI  | MR 4310510
[23] Peng, Z.: A new family of (A, N)-implications: construction and properties. Iranian J. Fuzzy Systems 17 (2020), 2, 129-145. MR 4155840
[24] Peng, Z.: The study on semicopula based implications. Kybernetika 56 (2020), 4, 662-694. DOI  | MR 4168530
[25] Pota, M., Esposito, M., Pietro, G. D.: Likelihood-fuzzy analysis: From data, through statistics, to interpretable fuzzy classifiers. International Journal of Approximate Reasoning 93 (2018) 88-102. DOI  | MR 3754531
[26] Pradera, A., Massanet, S., Ruiz, D., Torrens, J.: On the use of conjunctors with a neutral element in the modus ponens inequality. Int. J. Comput. Intell. Systems 13 (2020), 1, 201-211. DOI 
[27] Trillas, E., Alsina, C., Pradera, A.: On MPT-implication functions for fuzzy logic. Rev. R. Acad. Cienc. Ser. A. Mat. (RACSAM) 98 (2004), 1, 259-271. MR 2136170
[28] Trillas, E., Alsina, C., Renedo, E., Pradera, A.: On contra-symmetry and MPT-conditionality in fuzzy logic. Int. J. Intell. Systems 20 (2005), 313-326. DOI  | MR 1198778
[29] Trillas, E., Valverde, L.: On implication and indistinguishability in the setting of fuzzy logic. Read. Fuzzy Sets Intell. Systems (1993), 97-104. DOI 
[30] Yager, R. R.: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 193-216. DOI  | MR 2103181
[31] Yan, P., Chen, G.: Discovering a cover set of ARsi with hierarchy from quantitative databases. Inform. Sci. 173 (2005), 319-336. DOI  | MR 2149681
[32] Zadeh, L. A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybernet. 3 (1973), 28-44. DOI  | MR 0309582
Partner of
EuDML logo