[3] Collins, B., Dykema, K. J.:
Free products of sofic groups with amalgamation over monotileably amenable groups. Münster J. Math. 4 (2011), 101-118.
MR 2869256 |
Zbl 1242.43003
[9] Magnus, W., Karrass, A., Solitar, D.:
Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover Books on Mathematics. Dover Publications, Mineola (2004).
MR 2109550 |
Zbl 1130.20307
[10] Mal'tsev, A. I.:
On a general method for obtaining local theorems in group theory. Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak. 1 (1941), 3-9 Russian.
MR 0075939
[11] Mal'tsev, A. I.:
On homomorphisms onto finite groups. Twelve Papers in Algebra American Mathematical Society Translations: Series 2, 119. American Mathematical Society (1983), 67-79.
DOI 10.1090/trans2/119 |
Zbl 0511.20026
[13] Pflugfelder, H. O.:
Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics 7. Heldermann Verlag, Berlin (1990).
MR 1125767 |
Zbl 0715.20043
[14] Vershik, A. M., Gordon, E. I.:
Groups that are locally embeddable in the class of finite groups. St. Petersbg. Math. J. 9 (1998), 49-67.
MR 1458419 |
Zbl 0898.20016
[16] Weiss, B.:
Monotileable amenable groups. Topology, Ergodic Theory, Real Algebraic Geometry: Rokhlin's Memorial American Mathematical Society Translations: Series 2, 202. American Mathematical Society (2001), 257-262.
DOI 10.1090/trans2/202/18 |
MR 1819193 |
Zbl 0982.22004
[17] Ziman, M.:
Extensions of Latin subsquares and local embeddability of groups and group algebras. Quasigroups Relat. Syst. 11 (2004), 115-125.
MR 2064165 |
Zbl 1060.20057