Some bounds for the annihilators of local cohomology and Ext modules.
(English).Czechoslovak Mathematical Journal,
vol. 72
(2022),
issue 1,
pp. 265-284
Keywords: local cohomology module; Ext module; annihilator; primary decomposition
Summary: Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of ${\rm Ext}^t_R(M, N)$ and ${\rm H}^t_{\mathfrak a}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.
[2] Atazadeh, A., Sedghi, M., Naghipour, R.: Cohomological dimension filtration and annihilators of top local cohomology modules. Colloq. Math. 139 (2015), 25-35. DOI 10.4064/cm139-1-2 | MR 3332732 | Zbl 1314.13033
[3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). MR 0242802 | Zbl 0175.03601
[6] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[10] Huneke, C.: Lectures on local cohomology. Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 51-99. DOI 10.1090/conm/436 | MR 2355770 | Zbl 1127.13300
[14] Sharp, R. Y.: On Gorenstein modules over a complete Cohen-Macaulay local ring. Q. J. Math., Oxf. II. Ser. 22 (1971), 425-434 \99999DOI99999 10.1093/qmath/22.3.425 . DOI 10.1093/qmath/22.3.425 | MR 0289504 | Zbl 0221.13016