[6] Chen, J.-S., Pan, S.:
A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim. 8 (2012), 33-74.
MR 2919670 |
Zbl 1286.90148
[9] Chen, X. D., Sun, D., Sun, J.:
Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25 (2003), 39-56.
DOI 10.1023/A:1022996819381 |
MR 1996662 |
Zbl 1038.90084
[12] Chi, X., Tao, J., Zhu, Z., Duan, F.:
A regularized inexact smoothing Newton method for circular cone complementarity problem. Pac. J. Optim. 13 (2017), 197-218.
MR 3711669 |
Zbl 1386.65155
[14] Chi, X., Wei, H., Wan, Z., Zhu, Z.:
Smoothing Newton algorithm for the circular cone programming with a nonmonotone line search. Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1262-1280.
DOI 10.1016/S0252-9602(17)30072-3 |
MR 3683894 |
Zbl 1399.90207
[25] Ma, P., Bai, Y., Chen, J.-S.:
A self-concordant interior point algorithm for nonsymmetric circular cone programming. J. Nonlinear Convex Anal. 17 (2016), 225-241.
MR 3472994 |
Zbl 1354.90095
[34] Tang, J., He, G., Dong, L., Fang, L., Zhou, J.:
A smoothing Newton method for the second-order cone complementarity problem. Appl. Math., Praha 58 (2013), 223-247.
DOI 10.1007/s10492-013-0011-9 |
MR 3034823 |
Zbl 1274.90268
[36] Zhang, J., Chen, J.:
A smoothing Levenberg-Marquardt type method for LCP. J. Comput. Math. 22 (2004), 735-752.
MR 2080440 |
Zbl 1068.65084
[37] Zhou, J., Chen, J.-S.:
Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear Convex Anal. 14 (2013), 807-816.
MR 3131148 |
Zbl 1294.49007
[40] Zhou, J., Tang, J., Chen, J.-S.:
Parabolic second-order directional differentiability in the Hadamard sense of the vector-valued functions associated with circular cones. J. Optim. Theory Appl. 172 (2017), 802-823.
DOI 10.1007/s10957-016-0935-9 |
MR 3610222 |
Zbl 1362.90345