[2] Alías, L.J., Barros, A., Brasil Jr., A.:
A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Amer. Math. Soc. 133 (2005), 875–884.
DOI 10.1090/S0002-9939-04-07559-8 |
MR 2113939
[3] Alías, L.J., Brasil Jr., A., Perdomo, O.:
On the stability index of hypersurfaceswith constant mean curvature in spheres. Proc. Amer. Math. Soc. 135 (2007), 3685–3693.
DOI 10.1090/S0002-9939-07-08886-7 |
MR 2336585
[4] Alías, L.J., Brasil Jr., A., Sousa Jr., L.:
A characterization of Clifford tori with constant scalar curvatrue one by the first stability eigenvalue. Bull. Braz. Math. Soc. 35 (2004), 165–175.
DOI 10.1007/s00574-004-0009-8 |
MR 2081021
[6] Aquino, C.P., de Lima, H.F., dos Santos, Fábio R., Velásquez, Marco A.L.:
On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605–616.
DOI 10.2989/16073606.2017.1305463 |
MR 3691472
[9] Barbosa, J.L.M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 1123–138.
[11] Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Inc., 1984.
[14] de Lima, H.F., Velásquez, Marco A.L.:
A new characterization of $r$-stable hypersurfaces in space forms. Arch. Math. (Brno) 47 (2011), 119–131.
MR 2813538
[15] Montiel, S.:
Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48 (1999), 711–748.
DOI 10.1512/iumj.1999.48.1562