[2] Bak, S.:
The existence of heteroclinic traveling waves in the discrete sine-Gordon equation with nonlinear interaction on a 2D-lattice. Zh. Mat. Fiz. Anal. Geom. 14 (1) (2018), 16–26.
DOI 10.15407/mag14.01.016 |
MR 3783757
[3] Bak, S.M.:
Travelling waves in chains of oscillators. Mat. Stud. 26 (2) (2006), 140–153.
MR 2314304
[4] Bak, S.M.:
Periodic travelling waves in chains of oscillators. Commun. Math. Anal. 3 (1) (2007), 19–26.
MR 2347772
[5] Bak, S.M.:
Existence of periodic traveling waves in systems of nonlinear oscillators on 2D-lattice. Mat. Stud. 35 (1) (2011), 60–65, (in Ukrainian).
MR 2816218
[6] Bak, S.M.: Periodic travelling waves in the discrete sine–Gordon equation on 2D-lattice. Math. Comput. Model. Phys. Math. Sci. 9 (2013), 5–10, (in Ukrainian).
[7] Bak, S.M.:
Existence of heteroclinic traveling waves in a system of oscillators on a two-dimensional lattice. J. Math. Sci. 217 (2) (2016), 187–197.
DOI 10.1007/s10958-016-2966-z |
MR 3532455
[8] Bak, S.M.:
Existence of solitary traveling waves for a system of nonlinearly coupled oscillators on the 2d-lattice. Ukr. Math. J. 69 (4) (2017), 509–520.
DOI 10.1007/s11253-017-1378-7 |
MR 3655283
[9] Bak, S.M.:
Homoclinic travelling waves in discrete sine-Gordon equation with nonlinear interaction on 2D lattice. Mat. Stud. 52 (2) (2019), 176–184.
MR 4056523
[10] Bak, S.N., Pankov, A.A.:
Travelling waves in systems of oscillators on 2D-lattices. J. Math. Sci. 174 (4) (2011), 916–920.
MR 2768150
[13] Braun, O.M., Kivshar, Y.S.:
The Frenkel-Kontorova Model. Concepts, Methods and Applications. Berlin: Springer, 2004.
MR 2035039
[15] Cahn, J.W., Mallet-Paret, J., van Vleck, E.S.:
Travelling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59 (2) (1998), 455–493.
DOI 10.1137/S0036139996312703
[16] Chow, S.N., Mallet-Paret, J., Shen, W.:
Travelling waves in lattice dynamical systems. J. Differential Equations 149 (1998), 248–291.
DOI 10.1006/jdeq.1998.3478
[17] Chua, L.O., Roska, T.:
The CNN paradigm. IEEE Trans. Circuits Syst. 40 (1993), 147–156.
DOI 10.1109/81.222795
[18] Eilbeck, J.C., Flesch, R.:
Calculation of families of solitary waves on discrete lattices. Phys. Lett. A 149 (1990), 200–202.
DOI 10.1016/0375-9601(90)90326-J
[21] Friesecke, G., Matthies, K.:
Geometric solitary waves in a 2D math-spring lattice. Discrete Contin. Dyn. Syst. 3 (1) (2003), 105–114.
MR 1951571
[22] Hupkes, H.J., Morelli, L., Stehlí, P., Švígler, V.:
Multichromatic travelling waves for lattice Nagumo equations. Appl. Math. Comput. 361 (15) (2019), 430–452.
MR 3961829
[23] Iooss, G., Kirschgässner, K.:
Travelling waves in a chain of coupled nonlinear oscillators. Commun. Math. Phys. 211 (2000), 439–464.
DOI 10.1007/s002200050821
[24] Keener, J.P.:
Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47 (3) (1987), 556–572.
DOI 10.1137/0147038
[25] Kreiner, C.-F., Zimmer, J.:
Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete Contin. Dyn. Syst. 25 (3) (2009), 1–17.
MR 2533982
[26] Kreiner, C.-F., Zimmer, J.:
Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction. Nonlinear Anal. 70 (9) (2009), 3146–3158.
DOI 10.1016/j.na.2008.04.018 |
MR 2503060
[27] Laplante, J.P., Erneux, T.:
Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96 (1992), 4931–4934.
DOI 10.1021/j100191a038
[29] Pankov, A.:
Traveling waves and periodic oscillations in Fermi-Pasta-Ulam lattices. London: Imperial College Press, 2005.
MR 2156331
[30] Rabinowitz, P.H.:
Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1986.
Zbl 0609.58002
[31] Wattis, J.A.D.:
Approximations to solitary waves on lattices, II: Quasicontinuum methods for fast and slow waves. J. Phys. A 26 (1993), 1193–1209.
DOI 10.1088/0305-4470/26/5/036
[33] Wattis, J.A.D.:
Approximations to solitary waves on lattices, III: The monatomic lattice with second-neighbour interactions. J. Phys. A 29 (1996), 8139–8157.
DOI 10.1088/0305-4470/29/24/035
[34] Willem, M.:
Minimax theorems. Boston, Birkhäuser, 1996.
Zbl 0856.49001