Previous |  Up |  Next

Article

Keywords:
a priori bounds; primitive equation; continuous dependence
Summary:
In this paper, we consider an initial boundary value problem for the two-dimensional primitive equations of large scale oceanic dynamics. Assuming that the depth of the ocean is a positive constant, we establish rigorous a priori bounds of the solution to problem. With the aid of these a priori bounds, the continuous dependence of the solution on changes in the boundary terms is obtained.
References:
[1] Chen, W.: Cauchy problem for thermoelastic plate equations with different damping mechanisms. Commun. Math. Sci. 18 (2020), 429-457. DOI 10.4310/CMS.2020.v18.n2.a7 | MR 4101316 | Zbl 07327456
[2] Chen, W.: Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal., Theory Methods Appl., Ser. A 202 (2021), Article ID 112160, 23 pages. DOI 10.1016/j.na.2020.112160 | MR 4156977 | Zbl 1450.35172
[3] Chen, W., Dao, T. A.: On the Cauchy problem for semilinear regularity-loss-type $\sigma$-evolution models with memory term. Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103265, 26 pages. DOI 10.1016/j.nonrwa.2020.103265 | MR 4177989 | Zbl 07347902
[4] Chiodaroli, E., Michálek, M.: Existence and non-uniqueness of global weak solutions to inviscid primitive and Boussinesq equations. Commun. Math. Phys. 353 (2017), 1201-1216. DOI 10.1007/s00220-017-2846-5 | MR 3652488 | Zbl 1373.35238
[5] Fang, D., Han, B.: Global well-posedness for the 3D primitive equations in anisotropic framework. J. Math. Anal. Appl. 484 (2020), Article ID 123714, 22 pages. DOI 10.1016/j.jmaa.2019.123714 | MR 4039433 | Zbl 1433.35268
[6] Hameed, A. A., Harfash, A. J.: Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density. Basrah J. Sci. 37 (2019), 1-15. MR 4241308
[7] Hardy, C. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952). MR 0046395 | Zbl 0047.05302
[8] Hieber, M., Hussein, A., Kashiwabara, T.: Global strong $L^p$ well-posedness of the 3D primitive equations with heat and salinity diffusion. J. Differ. Equations 261 (2016), 6950-6981. DOI 10.1016/j.jde.2016.09.010 | MR 3562316 | Zbl 1351.35139
[9] Huang, D.-W., Guo, B.-L.: On two-dimensional large-scale primitive equations in oceanic dynamics. I. Appl. Math. Mech., Engl. Ed. 28 (2007), 581-592. DOI 10.1007/s10483-007-0503-x | MR 2325168 | Zbl 1231.35264
[10] Huang, D.-W., Guo, B.-L.: On two-dimensional large-scale primitive equations in oceanic dynamics. II. Appl. Math. Mech., Engl. Ed. 28 (2007), 593-600. DOI 10.1007/s10483-007-0504-x | MR 2325169 | Zbl 1231.35265
[11] Huang, D., Shen, T., Zheng, Y.: Ergodicity of two-dimensional primitive equations of large scale ocean in geophysics driven by degenerate noise. Appl. Math. Lett. 102 (2020), Article ID 106146, 8 pages. DOI 10.1016/j.aml.2019.106146 | MR 4037702 | Zbl 1441.60046
[12] Jiu, Q., Li, M., Wang, F.: Uniqueness of the global weak solutions to 2D compressible primitive equations. J. Math. Anal. Appl. 461 (2018), 1653-1671. DOI 10.1016/j.jmaa.2017.12.035 | MR 3765508 | Zbl 1406.35281
[13] Li, Y.: Continuous dependence on boundary parameters for three-dimensional viscous primitive equation of large-scale ocean atmospheric dynamics. J. Jilin Univ., Sci. 57 (2019), 1053-1059 Chinese. DOI 10.13413/j.cnki.jdxblxb.2019038 | MR 3970526 | Zbl 1449.35036
[14] Li, Y.: Continuous dependence on viscosity coefficient for the primitive equations. J. Shandong Univ., Nat. Sci. 54 (2019), 12-23 Chinese. DOI 10.6040/j.issn.1671-9352.0.2019.539 | MR 4114791 | Zbl 1449.35037
[15] Li, Y., Lin, C.: Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe. Appl. Math. Comput. 244 (2014), 201-208. DOI 10.1016/j.amc.2014.06.082 | MR 3250570 | Zbl 1335.35198
[16] Lions, J. L., Temam, R., Wang, S.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5 (1992), 237-288. DOI 10.1088/0951-7715/5/2/001 | MR 1158375 | Zbl 0746.76019
[17] Lions, J. L., Temam, R., Wang, S.: On the equations of the large-scale ocean. Nonlinearity 5 (1992), 1007-1053. DOI 10.1088/0951-7715/5/5/002 | MR 1187737 | Zbl 0766.35039
[18] Lions, J. L., Temam, R., Wang, S.: Models of the coupled atmosphere and ocean (CAO I). Comput. Mech. Adv. 1 (1993), 5-54. MR 1252502 | Zbl 0805.76011
[19] Lions, J. L., Temam, R., Wang, S.: Mathematical theory for the coupled atmosphere-ocean models (CAO III). J. Math. Pures Appl., IX. Sér. 74 (1995), 105-163. MR 1325825 | Zbl 0866.76025
[20] Liu, Y.: Continuous dependence for a thermal convection model with temperature-dependent solubitity. Appl. Math. Comput. 308 (2017), 18-30. DOI 10.1016/j.amc.2017.03.004 | MR 3638153 | Zbl 1411.35228
[21] Liu, Y., Xiao, S., Lin, Y.: Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 150 (2018), 66-82. DOI 10.1016/j.matcom.2018.02.009 | MR 3783079 | Zbl 07316235
[22] Mitrinović, D. S.: Analytical Inequalities. Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). DOI 10.1007/978-3-642-99970-3 | MR 0274686 | Zbl 199.38101
[23] Petcu, M., Temam, R., Wirosoetisno, D.: Existence and regularity results for the primitive equations in the two dimensions. Commun. Pure Appl. Anal. 3 (2004), 115-131. DOI 10.3934/cpaa.2004.3.115 | MR 2033944 | Zbl 1060.35033
[24] Scott, N. L., Straughan, B.: Continuous dependence on the reaction terms in porous convection with surface reactions. Q. Appl. Math. 71 (2013), 501-508. DOI 10.1090/S0033-569X-2013-01289-X | MR 3112825 | Zbl 1275.35022
[25] Sun, J., Cui, S.: Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces. Nonlinear Anal., Real World Appl. 48 (2019), 445-465. DOI 10.1016/j.nonrwa.2019.02.003 | MR 3915400 | Zbl 1453.35152
[26] Sun, J., Yang, M.: Global well-posedness for the viscous primitive equations of geophysics. Bound. Value Probl. 2016 (2016), Article ID 21, 16 pages. DOI 10.1186/s13661-016-0526-6 | MR 3451597 | Zbl 1330.35349
[27] You, B., Li, F.: Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics. Z. Angew. Math. Phys. 69 (2018), Article ID 114, 13 pages. DOI 10.1007/s00033-018-1007-9 | MR 3846299 | Zbl 1400.35037
Partner of
EuDML logo