Previous |  Up |  Next

Article

Keywords:
complementarity problem; symmetric cone; Levenberg-Marquardt method; Euclidean Jordan algebra; local error bound
Summary:
In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.
References:
[1] Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95 (2003), 3-51. DOI 10.1007/s10107-002-0339-5 | MR 1971381 | Zbl 1153.90522
[2] Amini, K., Rostami, F.: A modified two steps Levenberg-Marquardt method for nonlinear equations. J. Comput. Appl. Math. 288 (2015), 341-350. DOI 10.1016/j.cam.2015.04.040 | MR 3349627 | Zbl 1320.65074
[3] Chen, X., Qi, H., Tseng, P.: Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems. SIAM J. Optim. 13 (2003), 960-985. DOI 10.1137/S1052623400380584 | MR 2005912 | Zbl 1076.90042
[4] Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104 (2005), 293-327. DOI 10.1007/s10107-005-0617-0 | MR 2179239 | Zbl 1093.90063
[5] Dan, H., Yamashita, N., Fukushima, M.: Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions. Optim. Methods Softw. 17 (2002), 605-626. DOI 10.1080/1055678021000049345 | MR 1938337 | Zbl 1030.65049
[6] Facchinei, F., Kanzow, C.: A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems. Math. Program. 76 (1997), 493-512. DOI 10.1007/BF02614395 | MR 1433968 | Zbl 0871.90096
[7] Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. Oxford University Press, Oxford (1994). MR 1446489 | Zbl 0841.43002
[8] Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12 (2002), 436-460. DOI 10.1137/S1052623400380365 | MR 1885570 | Zbl 0995.90094
[9] Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput. 27 (2005), 622-645. DOI 10.1137/040608982 | MR 2202237 | Zbl 1094.68108
[10] Harker, P. T., Pang, J.-S.: Finite-dimensional variational inequalities and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program., Ser. B 48 (1990), 161-220. DOI 10.1007/BF01582255 | MR 1073707 | Zbl 0734.90098
[11] Hayashi, S., Yamashita, N., Fukushima, M.: Robust Nash equilibria and second-order cone complementarity problems. J. Nonlinear Convex Anal. 6 (2005), 283-296. MR 2159841 | Zbl 1137.91310
[12] Kanno, Y., Martins, J. A. C., Costa, A. Pinto Da: Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem. Int. J. Numer. Methods Eng. 65 (2006), 62-83. DOI 10.1002/nme.1493 | MR 2185946 | Zbl 1106.74044
[13] Kheirfam, B., Mahdavi-Amiri, N.: A new interior-point algorithm based on modified Nesterov-Todd direction for symmetric cone linear complementarity problem. Optim. Lett. 8 (2014), 1017-1029. DOI 10.1007/s11590-013-0618-5 | MR 3170583 | Zbl 1320.90092
[14] Lu, N., Huang, Z.-H.: A smoothing Newton algorithm for a class of non-monotonic symmetric cone linear complementarity problems. J. Optim. Theory Appl. 161 (2014), 446-464. DOI 10.1007/s10957-013-0436-z | MR 3193800 | Zbl 1291.90261
[15] Shahraki, M. Sayadi, Mansouri, H., Zangiabadi, M., Mahdavi-Amiri, N.: A wide neighborhood primal-dual predictor-corrector interior-point method for symmetric cone optimization. Numer. Algorithms 78 (2018), 535-552. DOI 10.1007/s11075-017-0387-9 | MR 3803358 | Zbl 1395.90240
[16] Sun, D., Sun, J.: Löwner's operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33 (2008), 421-445. DOI 10.1287/moor.1070.0300 | MR 2416001 | Zbl 1218.90197
[17] Wang, G. Q., Bai, Y. Q.: A class of polynomial interior point algorithms for the Cartesian P-matrix linear complementarity problem over symmetric cones. J. Optim. Theory Appl. 152 (2012), 739-772. DOI 10.1007/s10957-011-9938-8 | MR 2886370 | Zbl 1251.90392
[18] Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. Topics in Numerical Analysis Computing Supplementa 15. Springer, Wien (2001), 239-249. DOI 10.1007/978-3-7091-6217-0_18 | MR 1874516 | Zbl 1001.65047
[19] Zhang, J.-L., Zhang, X.: A smoothing Levenberg-Marquardt method for NCP. Appl. Math. Comput. 178 (2006), 212-228. DOI 10.1016/j.amc.2005.11.036 | MR 2248482 | Zbl 1104.65061
[20] Zhang, J., Zhang, K.: An inexact smoothing method for the monotone complementarity problem over symmetric cones. Optim. Methods Softw. 27 (2012), 445-459. DOI 10.1080/10556788.2010.534164 | MR 2916855 | Zbl 1243.49036
[21] Zhang, L.: Solvability of semidefinite complementarity problems. Appl. Math. Comput. 196 (2008), 86-93. DOI 10.1016/j.amc.2007.05.052 | MR 2382592 | Zbl 1144.90495
Partner of
EuDML logo