Previous |  Up |  Next

Article

Keywords:
fractional diffusion; Laplace transform; inverse impedance problem
Summary:
In this paper, we consider the direct and inverse problem for time-fractional diffusion in a domain with an impenetrable subregion. Here we assume that on the boundary of the subregion the solution satisfies a generalized impedance boundary condition. This boundary condition is given by a second order spatial differential operator imposed on the boundary. A generalized impedance boundary condition can be used to model corrosion and delimitation. The well-posedness for the direct problem is established where the Laplace transform is used to study the time dependent boundary value problem. The inverse impedance problem of determining the parameters from the Cauchy data is also studied provided the boundary of the subregion is known. The uniqueness of recovering the boundary parameters from the Neumann to Dirichlet mapping is proven.
References:
[1] Boukari, Y., Haddar, H.: A convergent data completion algorithm using surface integral equations. Inverse Probl. 31 (2015), Article ID 035011, 21 pages. DOI 10.1088/0266-5611/31/3/035011 | MR 3319377 | Zbl 1314.35023
[2] Brown, T. S., Du, S., Eruslu, H., Sayas, F.-J.: Analysis of models for viscoelastic wave propagation. Appl. Math. Nonlinear Sci. 3 (2018), 55-96. DOI 10.21042/AMNS.2018.1.00006 | MR 3893319
[3] Cakoni, F., Teresa, I. de, Haddar, H., Monk, P.: Nondestructive testing of the delaminated interface between two materials. SIAM J. Appl. Math. 76 (2016), 2306-2332. DOI 10.1137/16M1064167 | MR 3576580 | Zbl 1362.35328
[4] Cakoni, F., Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Probl. 29 (2013), Article ID 015005, 19 pages. DOI 10.1088/0266-5611/29/1/015005 | MR 3003012 | Zbl 1302.65146
[5] Monk, F. Cakoni P., Selgas, V.: Analysis of the linear sampling method for imaging penetrable obstacles in the time domain. Anal. PDE 14 (2021), 667-688. DOI 10.2140/apde.2021.14.667 | MR 4259870 | Zbl 7365578
[6] Calderón, A.-P.: On an inverse boundary value problem. Seminar on Numerical Analysis and Its Applications to Continuum Physics Soc. Brasil. Mat., Rio de Janeiro (1980), 65-73. MR 0590275
[7] Chaabane, S., Charfi, B., Haddar, H.: Reconstruction of discontinuous parameters in a second order impedance boundary operator. Inverse Probl. 32 (2016), Article ID 105004, 22 pages. DOI 10.1088/0266-5611/32/10/105004 | MR 3627028 | Zbl 1354.65230
[8] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). DOI 10.1090/gsm/019 | MR 2597943 | Zbl 1194.35001
[9] Guo, J., Nakamura, G., Wang, H.: The factorization method for recovering cavities in a heat conductor. Available at https://arxiv.org/abs/1912.11590 (2019), 15 pages.
[10] Haddar, H., Lechleiter, A., Marmorat, S.: An improved time domain linear sampling method for Robin and Neumann obstacles. Appl. Anal. 93 (2014), 369-390. DOI 10.1080/00036811.2013.772583 | MR 3169211 | Zbl 1290.35169
[11] Harris, I.: Detecting an inclusion with a generalized impedance condition from electrostatic data via sampling. Math. Methods Appl. Sci. 42 (2019), 6741-6756. DOI 10.1002/mma.5777 | MR 4037932 | Zbl 1437.35177
[12] Harris, I.: A direct method for reconstructing inclusions and boundary conditions from electrostatic data. To appear in Appl. Anal. (2021), 19 pages. DOI 10.1080/00036811.2021.1991326
[13] Ismailov, M. I., Çiçek, M.: Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Modelling 40 (2016), 4891-4899. DOI 10.1016/j.apm.2015.12.020 | MR 3478250 | Zbl 1459.35395
[14] Jin, B., Rundell, W.: A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl. 31 (2015), Article ID 035003, 40 pages. DOI 10.1088/0266-5611/31/3/035003 | MR 3311557 | Zbl 1323.34027
[15] Kaltenbacher, B., Rundell, W.: On an inverse potential problem for a fractional reaction-diffusion equation. Inverse Probl. 35 (2019), Article ID 065004, 31 pages. DOI 10.1088/1361-6420/ab109e | MR 3975371 | Zbl 1461.35233
[16] Kaltenbacher, B., Rundell, W.: Regularization of a backwards parabolic equation by fractional operators. Inverse Probl. Imaging 13 (2019), 401-430. DOI 10.3934/ipi.2019020 | MR 3925425 | Zbl 1410.35285
[17] Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and Its Applications 36. Oxford University Press, Oxford (2008). DOI 10.1093/acprof:oso/9780199213535.001.0001 | MR 2378253 | Zbl 1222.35001
[18] Mueller, J. F., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. Computational Science & Engineering 10. SIAM, Philadelphia (2012). DOI 10.1137/1.9781611972344 | MR 2986262 | Zbl 1262.65124
[19] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). DOI 10.1016/s0076-5392(99)x8001-5 | MR 1658022 | Zbl 0924.34008
[20] Qiu, T., Rieder, A., Sayas, F.-J., Zhang, S.: Time-domain boundary integral equation modeling of heat transmission problems. Numer. Math. 143 (2019), 223-259. DOI 10.1007/s00211-019-01040-y | MR 3987172 | Zbl 1428.65102
[21] Salsa, S.: Partial Differential Equations in Action: From Modelling to Theory. Universitext. Springer, Berlin (2008). DOI 10.1007/978-88-470-0752-9 | MR 2399851 | Zbl 1146.35001
[22] Sayas, F.-J.: Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer Series in Computational Mathematics 50. Springer, Cham (2016). DOI 10.1007/978-3-319-26645-9 | MR 3468871 | Zbl 1346.65047
[23] Thach, T. N., Huy, T. N., Tam, P. T. M., Minh, M. N., Can, N. H.: Identification of an inverse source problem for time-fractional diffusion equation with random noise. Math. Methods Appl. Sci. 42 (2019), 204-218. DOI 10.1002/mma.5334 | MR 3905782 | Zbl 1407.35093
Partner of
EuDML logo