Previous |  Up |  Next

Article

Keywords:
Almost Kenmotsu manifolds; Semisymmetry; Pseudosymmetry; Hyperbolic space.
Summary:
The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a $(k,\mu )$-almost Kenmotsu manifold satisfying the curvature condition $Q\cdot R = 0$ is locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$. Also in $(k,\mu )$-almost Kenmotsu manifolds the following conditions: (1) local symmetry $(\nabla R = 0)$, (2) semisymmetry $(R\cdot R = 0)$, (3) $Q(S,R) = 0$, (4) $R\cdot R = Q(S,R)$, (5) locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$ are equivalent. Further, it is proved that a $(k,\mu )'$-almost Kenmotsu manifold satisfying $Q\cdot R = 0$ is locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$ and a $(k,\mu )'$\HH almost Kenmotsu manifold satisfying any one of the curvature conditions $Q(S,R) = 0$ or $R\cdot R = Q(S,R)$ is either an Einstein manifold or locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$. Finally, an illustrative example is presented.
References:
[1] Blair, D. E.: Contact Manifolds in Riemannian Geometry. 1976, Lecture Notes on Mathematics 509. Springer-Verlag, Berlin-New York, Zbl 0319.53026
[2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds (second edition). 2010, Progress in Mathematics 203. Birkhäuser, Boston, MR 2682326
[3] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: Contact metric manifolds satisfying a nullity condition. Israel. J. Math., 91, 1-3, 1995, 189-214, DOI 10.1007/BF02761646 | Zbl 0837.53038
[4] Dey, D., Majhi, P.: On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions. Facta Univ. Ser. Math. Inform., 33, 2, 2018, 255-268, MR 3859876
[5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry. Bull. Belg. Math. Soc. Simon Stevin, 14, 2, 2007, 343-354, DOI 10.36045/bbms/1179839227 | MR 2341570
[6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions. J. Geom., 93, 1-2, 2009, 46-61, DOI 10.1007/s00022-009-1974-2 | MR 2501208 | Zbl 1204.53025
[7] Ghosh, G., Majhi, P., De, U. C.: On a classification of almost Kenmotsu manifolds with generalized $(k,\mu )'$-nullity distribution. Kyungpook Math. J., 58, 1, 2018, 137-148, MR 3796023
[8] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. (2), 24, 1972, 93-103, Zbl 0245.53040
[9] Kowalczyk, D.: On some subclass of semisymmetric manifolds. Soochow J. Math., 27, 4, 2001, 445-461, MR 1867812
[10] Pastore, A. M., Saltarelli, V.: Generalized nullity distribution on almost Kenmotsu manifolds. Int. Elec. J. Geom., 4, 2, 2011, 168-183, MR 2929587
[11] Verheyen, P., Verstraelen, L.: A new intrinsic characterization of hypercylinders in Euclidean spaces. Kyungpook Math. J., 25, 1, 1985, 1-4,
[12] Verstraelen, L.: Comments on pseudosymmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of Submanifolds, VI. River Edge. NJ: World Sci. Publishing, 6, 1994, 199-209,
[13] Wang, Y., Liu, X.: Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions. Ann. Polon. Math., 112, 1, 2014, 37-46, DOI 10.4064/ap112-1-3 | MR 3244913
[14] Wang, Y., Liu, X.: On $\phi $-recurrent almost Kenmotsu manifolds. Kuwait J. Sci., 42, 1, 2015, 65-77, MR 3331380
[15] Wang, Y., Wang, W.: Curvature properties of almost Kenmotsu manifolds with generalized nullity conditions. Filomat, 30, 14, 2016, 3807-3816, DOI 10.2298/FIL1614807W | MR 3593751
Partner of
EuDML logo