[1] Aasi, J.: Searches for continuous gravitational waves from nine young supernova remnants. Class. Quant. Grav. 32 (2015), 074001.
[3] An, D., Meissner, A. K., Nurowski, P., Penrose, R.:
Apparent evidence for Hawking points in the CMB Sky. Mon. Not. Roy. Astron. Soc. 495 (2020), 3403–3408.
DOI 10.1093/mnras/staa1343
[6] Barish, B. C., Weiss, R.:
LIGO and the detection of gravitational waves. Physics Today 52 (1999), 44.
DOI 10.1063/1.882861
[8] Bombaci, I.: The maximum mass of a neutron star. Astron. Astrophys. 305 (1996), 871–877.
[10] Boyer, R. H., Lindquist, R. W.:
Maximal analytic extension of the Kerr metric. J. Math. Phys. 8 (1967), 265.
DOI 10.1063/1.1705193
[11] Costa, E.: Discovery of an X-ray afterglow associated with the $\gamma$-ray burst of 28 February 1997. Nature 387 (1997), 783–785.
[12] Crowther, P. A., Hirschi, R., Walborn, N. R., Yusof, N.: Very massive stars and the Eddington limit. In: Drissen, L., Robert, C., St-Louis, N., Moffat, A. F. J.: Four decades of massive star research – a scientific meeting in honor of Anthony J. Moffat, Astronomical Society of the Pacific Conference Series 465, 2012, 196–201.
[13] Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D. F., Riess, A. G., Silk, J.:
In the realm of the Hubble tension—a review of solutions. Class. Quantum Grav. 38 (2021), 153001.
DOI 10.1088/1361-6382/ac086d
[16] de Gasperin, F.:
The LOFAR LBA Sky Survey – I. survey description and preliminary data release. Astron. Astrophys. 648 (2021), A104.
DOI 10.1051/0004-6361/202140316
[17] Genzel, R.:
A forty year journey. 2021, arXiv: 2102.13000.
MR 4453999
[18] Gold, T.:
Rotating neutron stars as the origin of the pulsating radio sources. Nature 218 (1968), 731–732.
DOI 10.1038/218731a0
[20] Han, J. L.:
The FAST galactic plane pulsar snapshot survey I. Project design and pulsar discoveries. Res. Astron. Astrophys. 21 (2021), article no. 107.
DOI 10.1088/1674-4527/21/5/107
[21] Hawking, S.:
Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc. 152 (1971), 75–78.
DOI 10.1093/mnras/152.1.75
[22] Hawking, S. W., Ellis, G. F. R.: The large scale structure of space time. Cambridge University Press, 1994.
[23] Herdeiro, C. A. R., Lemos, J. P. S.: The black hole fifty years after: Genesis of the name. 2018, arXiv: 1811.06587.
[24] Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., Collins, R. A.:
Observation of a rapidly pulsating radio source. Nature 217 (1968), 709–713.
DOI 10.1038/217709a0
[25] Hulse, R. A., Taylor, J. H.:
Discovery of a pulsar in a binary system. Astrophys. J. 195 (1975), L51–L53.
DOI 10.1086/181708
[26] van de Hulst, H. C.: Radio astronomy. Cambridge University Press, 1957.
[28] Jansky, K. G.:
Radio waves from outside the solar system. Nature 132 (1933), 66.
DOI 10.1038/132066a0
[30] Kerr, R. P.:
Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11 (1963), 237–238.
DOI 10.1103/PhysRevLett.11.237
[32] Kroupa, P., Šubr, L., Jeřábková, T., Wang, L.: Very high redshift quasars and the rapid emergence of supermassive black holes. Mon. Not. Roy. Astron. Soc. 498 (2020), 5652–5683.
[33] Landau, L. D., Lifshitz, E. M.: The classical theory of fields. 4th revised edition, Pergamon Press Ltd., 1975.
[34] Laplace, P. S.: Exposition du système du monde. tome 2. Paris, 1796.
[35] Laplace, P. S.: Beweis des Satzes, daß die anziehende Kraft bey einem Weltkörper so groß seyn könne, daß das Licht davon nicht ausströmen kann. Allgemeine geographische Ephemeriden, Vierter Band (1799), 1–6.
[36] Lynden-Bell, D., Rees, M. J.:
On quasars, dust and the galactic centre. Mon. Not. Roy. Astron. Soc. 152 (1971), 461–475.
DOI 10.1093/mnras/152.4.461
[37] Michell, J.: On the means of discovering the distance, magnitude, &c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose. Phil. Trans. Roy. Soc. 74 (1784), 35–57.
[38] Misner, C. W., Thorne, K. S., Wheeler, J. A.: Gravitation. 20th edition, W. H. Freeman, 1997.
[40] Oppenheimer, J. R., Snyder, H.:
On continued gravitational contraction. Phys. Rev. 56 (1939), 455–459.
DOI 10.1103/PhysRev.56.455
[42] Osterbrock, D. E.: Who really coined the word supernova? Who first predicted neutron stars?. Bull. Amer. Astron. Soc. 33 (2001), 1330.
[43] Pacini, F.:
Rotating neutron stars, pulsars and supernova remnants. Nature 219 (1968), 145–146.
DOI 10.1038/219145a0
[44] Patrignani, C.: Particle physics booklet. University of California, 2016.
[46] Penrose, R.: Gravitational collapse: the role of General Relativity. La Rivista del Nuovo Cimento 1 (1969), 252–276.
[47] Penrose, R.: Collected Works. Oxford University Press, 2010.
[48] Penrose, R.:
Fashion, faith, and fantasy in the new physics of the universe. Princeton University Press, 2017.
MR 3524782
[49] Penrose, R., Floyd, R. M.:
Extraction of rotational energy from a black hole. Nature Phys. Sci. 229 (1971), 177–179.
DOI 10.1038/physci229177a0
[50] Planck Collaboration: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641 (2020), A6.
[53] Rivinius, T., Baade, D., Hadrava, P., Heida, M., Klement, R.:
A naked-eye triple system with a nonaccreting black hole in the inner binary. Astron. Astrophys. 637 (2020), L3.
DOI 10.1051/0004-6361/202038020
[54] Rybicki, G. B., Lightman, A. P.: Radiative processes in astrophysics. Wiley, 1979.
[55] Salpeter, E. E.:
Accretion of interstellar matter by massive objects. Astrophys. J. 140 (1964), 796–800.
DOI 10.1086/147973
[56] Shakura, I. N., Sunyaev, R. A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 500 (2009), 33–51.
[57] Schmidt, M.:
3C 273: A star-like object with large red-shift. Nature 197 (1963), 1040.
DOI 10.1038/1971040a0
[58] Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsber. Preuss. Akad. Wiss. (1916), 189–196. Anglický překlad: On the gravitational field of a point-mass, according to Einstein’s theory. The Abraham Zelmanov Journal 1 (2008), 10–19.
[59] Silk, J., Rees, M. J.: Quasars and galaxy formation. Astron. Astrophys. 331 (1998), L1–L4.
[60] Tanvir, N. R.:
A ‘kilonova’ associated with the short-duration $\gamma$-ray burst GRB 130603B. Nature 500 (2013), 547–549.
DOI 10.1038/nature12505
[61] Teukolsky, S. A.:
Deformation of extremal black holes from stringy interactions. Class. Quant. Grav. 32 (2015), 124006.
MR 3354529
[62] The Event Horizon Telescope Collaboration:
First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875 (2019), L1.
DOI 10.3847/2041-8213/ab0ec7
[64] Tolman, R. C.: Relativity, thermodynamics and cosmology. Clarendon Press, 1934.
[68] Weinberg, S.: Gravitation and cosmology: Principles and applications of the general theory of relativity. John Wiley, 1972.
[69] Wheeler, J. A.: Our universe: the known and the unknown. Amer. Scientist 56 (1968), 1–20.
[73] Wolszczan, A., Frail, A. D.:
A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355 (1992), 145–147.
DOI 10.1038/355145a0
[74] Zeldovič, J. B., Novikov, I. D.: Strojenije i evolucija vselennoj. Nauka, 1975.