[2] Lupaş, A. Alb:
On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 15 (2013), 1484-1489.
MR 3075680 |
Zbl 1290.30013
[5] Aouf, M. K.:
The Komatu integral operator and strongly close-to-convex functions. Bull. Math. Anal. Appl. 3 (2011), 209-219.
MR 2955361 |
Zbl 1314.30017
[7] Bulboacă, T.: Differential Subordinations and Superordinations: Recent Results. House of Scientic Book Publ., Cluj-Napoca (2005).
[8] Ebadian, A., Najafzadeh, S.:
Uniformly starlike and convex univalent functions by using certain integral operators. Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23.
MR 2656769 |
Zbl 1224.30046
[9] El-Ashwah, R. M., Aouf, M. K., El-Deeb, S. M.:
Differential subordination for certain subclasses of $p$-valent functions associated with generalized linear operator. J. Math. 2013 (2013), Article ID 692045, 8 pages.
DOI 10.1155/2013/692045 |
MR 3100736 |
Zbl 1268.30011
[10] Gal, S. G., Ban, A. I.: Elemente de Matematica Fuzzy. University of Oradea, Oradea (1996), Romanian.
[11] Khairnar, S. M., More, M.:
On a subclass of multivalent $\beta$-uniformly starlike and convex functions defined by a linear operator. IAENG, Int. J. Appl. Math. 39 (2009), 175-183.
MR 2554929 |
Zbl 1229.30008
[12] Komatu, Y.:
On analytic prolongation of a family of integral operators. Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145.
MR 1159903 |
Zbl 0753.30005
[14] Oros, G. I., Oros, G.:
The notation of subordination in fuzzy sets theory. Gen. Math. 19 (2011), 97-103.
MR 2879082 |
Zbl 1265.03050
[15] Oros, G. I., Oros, G.:
Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248.
MR 2974592 |
Zbl 1274.30059
[16] Oros, G. I., Oros, G.:
Fuzzy differential subordination. Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64.
MR 3025317 |
Zbl 1289.30155
[17] Raina, R. K., Bapna, I. B.:
On the starlikeness and convexity of a certain integral operator. Southeast Asian Bull. Math. 33 (2009), 101-108.
MR 2481938 |
Zbl 1212.30066
[18] Sălăgean, G. S.:
Subclasses of univalent functions. Complex Analysis -- Fifth Romanian-Finnish Seminar Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372.
DOI 10.1007/BFb0066543 |
MR 738107 |
Zbl 0531.30009