Previous |  Up |  Next

Article

Keywords:
supercongruence; Euler number; Almkvist-Zudilin sequence
Summary:
We prove two supercongruences involving Almkvist-Zudilin sequences, which were originally conjectured by Z.-H. Sun (2020).
References:
[1] Almkvist, G., Zudilin, W.: Differential equations, mirror maps and zeta values. Mirror Symmetry AMS/IP Studies in Advanced Mathematics 38. American Mathematical Society, Providence (2006), 481-515. DOI 10.1017/S0013091509000959 | MR 2282972 | Zbl 1118.14043
[2] Amdeberhan, T., Tauraso, R.: Supercongruences for the Almkvist-Zudilin numbers. Acta Arith. 173 (2016), 255-268. DOI 10.4064/aa8215-2-2016 | MR 3512855 | Zbl 1360.11004
[3] Apéry, R.: Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque 61 (1979), 11-13 French. MR 3363457 | Zbl 0401.10049
[4] Beukers, F.: Some congruences for the Apéry numbers. J. Number Theory 21 (1985), 141-155. DOI 10.1016/0022-314X(85)90047-2 | MR 0808283 | Zbl 0571.10008
[5] Beukers, F.: Another congruence for the Apéry numbers. J. Number Theory 25 (1987), 201-210. DOI 10.1016/0022-314X(87)90025-4 | MR 0873877 | Zbl 0614.10011
[6] Chan, H. H., Cooper, S., Sica, F.: Congruences satisfied by Apéry-like numbers. Int. J. Number Theory 6 (2010), 89-97. DOI 10.1142/S1793042110002879 | MR 2641716 | Zbl 1303.11009
[7] Coster, M. J.: Supercongruences: Ph.D. Thesis. Universiteit Leiden, Leiden (1988).
[8] Gessel, I.: Some congruences for Apéry numbers. J. Number Theory 14 (1982), 362-368. DOI 10.1016/0022-314X(82)90071-3 | MR 0660381 | Zbl 0482.10003
[9] Guo, V. J. W., Liu, J.-C.: Some congruences related to a congruence of Van Hamme. Integral Transforms Spec. Funct. 31 (2020), 221-231. DOI 10.1080/10652469.2019.1685991 | MR 4057150 | Zbl 1434.11054
[10] Guo, V. J. W., Zeng, J.: Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials. J. Number Theory 132 (2012), 1731-1740. DOI 10.1016/j.jnt.2012.02.004 | MR 2922341 | Zbl 1300.11005
[11] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. (2) 39 (1938), 350-360. DOI 10.2307/1968791 | MR 1503412 | Zbl 0019.00505
[12] Liu, J.-C.: Proof of some divisibility results on sums involving binomial coefficients. J. Number Theory 180 (2017), 566-572. DOI 10.1016/j.jnt.2017.05.006 | MR 3679814 | Zbl 1421.11006
[13] Liu, J.-C.: A generalized supercongruence of Kimoto and Wakayama. J. Math. Anal. Appl. 467 (2018), 15-25. DOI 10.1016/j.jmaa.2018.05.031 | MR 3834791 | Zbl 1406.11006
[14] Liu, J.-C.: On Van Hamme's (A.2) and (H.2) supercongruences. J. Math. Anal. Appl. 471 (2019), 613-622. DOI 10.1016/j.jmaa.2018.10.095 | MR 3906342 | Zbl 1423.11015
[15] Liu, J.-C.: Semi-automated proof of supercongruences on partial sums of hypergeometric series. J. Symb. Comput. 93 (2019), 221-229. DOI 10.1016/j.jsc.2018.06.004 | MR 3913573 | Zbl 1418.68248
[16] Liu, J.-C.: On a sum of Apéry-like numbers arising from spectral zeta functions. Colloq. Math. 160 (2020), 1-6. DOI 10.4064/cm7860-3-2019 | MR 4071810 | Zbl 07178814
[17] Liu, J.-C.: On two congruences involving Franel numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 201, 10 pages. DOI 10.1007/s13398-020-00935-y | MR 4151769 | Zbl 1444.11010
[18] Liu, J.-C.: Some supercongruences arising from symbolic summation. J. Math. Anal. Appl. 488 (2020), Article ID 124062, 10 pages. DOI 10.1016/j.jmaa.2020.124062 | MR 4079597 | Zbl 07186505
[19] Liu, J.-C.: A supercongruence relation among Apéry-like numbers. Colloq. Math. 163 (2021), 333-340. DOI 10.4064/cm8108-4-2020 | MR 4173185 | Zbl 07301035
[20] Liu, J.-C., Wang, C.: Congruences for the $(p-1)$th Apéry number. Bull. Aust. Math. Soc. 99 (2019), 362-368. DOI 10.1017/S0004972718001156 | MR 3952469 | Zbl 07062625
[21] Mortenson, E.: Supercongruences between truncated $_2F_1$ hypergeometric functions and their Gaussian analogs. Trans. Am. Math. Soc. 355 (2003), 987-1007. DOI 10.1090/S0002-9947-02-03172-0 | MR 1938742 | Zbl 1074.11044
[22] Osburn, R., Sahu, B.: Supercongruences for Apéry-like numbers. Adv. Appl. Math. 47 (2011), 631-638. DOI 10.1016/j.aam.2011.03.002 | MR 2822206 | Zbl 1244.11006
[23] Osburn, R., Sahu, B., Straub, A.: Supercongruences for sporadic sequences. Proc. Edinb. Math. Soc., II. Ser. 59 (2016), 503-518. DOI 10.1017/S0013091515000255 | MR 3509244 | Zbl 1411.11005
[24] Osburn, R., Schneider, C.: Gaussian hypergeometric series and supercongruences. Math. Comput. 78 (2009), 275-292. DOI 10.1090/S0025-5718-08-02118-2 | MR 2448707 | Zbl 1209.11049
[25] Pan, H.: On divisibility of sums of Apéry polynomials. J. Number Theory 143 (2014), 214-223. DOI 10.1016/j.jnt.2014.03.006 | MR 3227343 | Zbl 1353.11004
[26] Schneider, C.: Symbolic summation assists combinatorics. Sémin. Lothar. Comb. 56 (2007), B56b, 36 pages. MR 2317679 | Zbl 1188.05001
[27] Sun, Z.-H.: New congruences involving Apéry-like numbers. Available at https://arxiv.org/abs/2004.07172 (2020), 24 pages.
[28] Sun, Z.-W.: Super congruences and Euler numbers. Sci. China, Math. 54 (2011), 2509-2535. DOI 10.1007/s11425-011-4302-x | MR 2861289 | Zbl 1256.11011
[29] Sun, Z.-W.: On sums of Apéry polynomials and related congruences. J. Number Theory 132 (2012), 2673-2699. DOI 10.1016/j.jnt.2012.05.014 | MR 2954998 | Zbl 1275.11038
[30] Sun, Z.-W.: A new series for $\pi^3$ and related congruences. Int. J. Math. 26 (2015), Article ID 1550055, 23 pages. DOI 10.1142/S0129167X1550055X | MR 3372182 | Zbl 1321.11023
[31] Wang, C.: Symbolic summation methods and hypergeometric supercongruences. J. Math. Anal. Appl. 488 (2020), Article ID 124068, 11 pages. DOI 10.1016/j.jmaa.2020.124068 | MR 4079598 | Zbl 1448.11053
[32] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5 (1862), 35-39.
[33] Zagier, D.: Integral solutions of Apéry-like recurrence equations. Groups and Symmetries: From Neolithic Scots to John McKay CRM Proceedings and Lecture Notes 47. American Mathematical Society, Providence (2009), 349-366. DOI 10.1090/crmp/047 | MR 2500571 | Zbl 1244.11042
Partner of
EuDML logo