[1] Al-Mahbashi, G., Noorani, M.:
Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control. IEEE Access 7 (2019), 7082-7092.
DOI
[2] Chen, W. S., Jiao, L. C.:
Finite-time stability theorem of stochastic nonlinear systems. Automatica 46 (2010), 12, 2105-2108.
DOI
[3] Chen, L., Lu, J. A., Chi, K. T.:
Synchronization: an obstacle to identication of network topology. IEEE Trans. Circuits Syst. II 56 (2009), 4, 310-314.
DOI
[4] Guan, Z. H., Sun, F. L., Wang, Y. W., Li, T.:
Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans. Circuits Syst. I 59 (2012), 11, 2646-2654.
DOI
[5] Guo, S. J., Fu, X. C.:
Identifying the topology of networks with discrete-time dynamics. J. Phys. A: Math. Theor. 43 (2010), 29, 295101.
DOI
[6] Hardy, G., Littlewood, J., Polya, G.:
Inequalities. Cambridge 1952.
Zbl 0634.26008
[7] Lin, W., Ma, H. F.:
Failure of parameter identication based on adaptive synchronization techniques. Phys. Rev. E 75 (2007), 6, 066212.
DOI
[8] Liu, H., Lu, J. A., Lü, J. H., Hill, D. .:
Structure identication of uncertain general complex dynamical networks with time delay. Automatica 45 (2009), 8, 1799-1807.
DOI
[9] Lorenz, E. N.:
Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 1, 130-141.
DOI
[10] Mao, X. R.:
Stochastic versions of the LaSalle theorem. J. Diff. Equat. 153 (1999), 1, 175-195.
DOI
[11] Mei, J., Jiang, M. H., Wang, J.:
Finite-time structure identification and synchronization of drive-response systems with uncertain parameter. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 4, 999-1015.
DOI
[12] Selvaraj, P., Kwon, O., Sakthivel, R.:
Disturbance and uncertainty rejection performance for fractional-order complex dynamical networks. Neural Networks 112 (2019), 73-84.
DOI
[13] Sun, Y. Z., Li, W., Zhao, D. H.:
Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 2, 023152.
DOI
[14] Wu, X. Q.:
Synchronization-based topology identication of weighted general complex dynamical networks with time-varying coupling delay. Physica A 387 (2008), 4, 997-1008.
DOI
[15] Wu, X. Q., Wang, W. H., Zheng, W. X.:
Inferring topologies of complex networks with hidden variables. Phys. Rev. E 86 (2012), 4, 046106.
DOI
[16] Wu, X. Q., Zhao, X. Y., Lü, J. H., Tang, L. K., Lu, J. A.:
Topology identification of complex dynamical networks with stochastic perturbations. IEEE Trans. Contr. Net. Syst. 3 (2016), 4, 379-389.
DOI
[17] Wu, X. Q., Zhou, C. S., Chen, G. R., Lu, J. A.:
Detecting the topologies of complex networks with stochastic perturbations. Chaos 21 (2011), 4, 043129.
DOI
[18] Xiao, F., Wang, L., Chen, J., Gao, Y. P.:
Finite-time formation control for multi-agent systems. Automatica 45 (2009), 11, 2605-2611.
DOI |
Zbl 1180.93006
[19] Yu, W. W., Chen, G. R., Cao, J. D., Lü, J. H., Parlitz, U.:
Parameter identication of dynamical systems from time series. Phys. Rev. E 75 (2007), 6, 067201.
DOI
[20] Yu, D. C., Righero, M., Kocarev, L.:
Estimating topology of networks. Phys. Rev. Lett. 97 (2006), 18, 188701.
DOI
[21] Zhao, J. C., Li, Q., Lu, J. A., Jiang, Z. P.:
Topology identication of complex dynamical networks. Chaos 20 (2010), 2, 023119.
DOI
[22] Zhao, H., Li, L. X., Peng, H. P., Xiao, J. H., Yang, Y. X., Zheng, M. W.:
Finite-time topology identification and stochastic synchronization of complex network with multiple time delays. Neurocomputing 219 (2017), 39-49.
DOI
[23] Zhao, H., Zheng, M. W.:
Finite-time synchronization of coupled memrisive neural network via robust control. IEEE Access 7 (2019), 31820-31831.
DOI
[24] Zhou, J., Lu, J. A.:
Topology identication of weighted complex dynamical networks. Physica A 386 (2007), 1, 481-491.
DOI