[1] Albeverio, S., Ayupov, Sh.A., Omirov, B.A., Khudoyberdiyev, A.Kh.:
$n$-dimensional filiform Leibniz algebras of length $(n-1)$ and their derivations. J. Algebra, 319, 6, 2008, 2471-2488,
DOI 10.1016/j.jalgebra.2007.12.014
[2] Ancochea, J.M., Campoamor, R.: Characteristically Nilpotent Lie Algebras: A Survey. Extracta Math., 2, 2001, 153-210,
[3] Ayupov, Sh.A., Omirov, B.A.:
On some classes of nilpotent Leibniz algebras. Siberian Math. J., 42, 1, 2001, 15-24,
DOI 10.1023/A:1004829123402
[4] Bajo, I.: Lie algebras admitting non-singular prederivations. Indag. Mathem., 8, 4, 1997, 433-437,
[6] Burde, D.:
Lie algebra prederivations and strongly nilpotent Lie algebras. Comm. Algebra, 30, 7, 2002, 3157-3175,
DOI 10.1081/AGB-120004482
[7] Castro-Jiménez, F.J., Núñez Valdés, J.: On characteristically nilpotent filiform Lie algebras of dimension $9$. Comm. Algebra, 23, 8, 1995, 3059-3071,
[8] Dixmier, J., Lister, W.G.: Derivations of nilpotent Lie algebras. Proc. Amer. Math. Soc., 8, 1957, 155-158,
[9] Fialowski, A., Khudoyberdiyev, A.Kh., B.A.Omirov:
A characterization of nilpotent Leibniz algebras. Algebr. Represent. Theory, 16, 5, 2013, 1489-1505,
DOI 10.1007/s10468-012-9373-z
[10] Gómez, J.R., Jiménez-Merchán, A., Khakimdjanov, Y.: Low-dimensional filiform Lie algebras. J. Pure Appl. Algebra, 130, 2, 1998, 133-158,
[11] Gómez, J.R., Omirov, B.A.:
On classification of complex filiform Leibniz algebras. Algebra Colloquium, 22, 1, 2015, 757-774,
DOI 10.1142/S1005386715000668
[12] Hilton, P., Pedersen, J.:
Catalan numbers, their generalization, and their uses. Math. Intelligencer, 13, 2, 1991, 64-75,
DOI 10.1007/BF03024089
[14] Kaygorodov, I., Popov, Yu.:
Alternative algebras admitting derivations with invertible values and invertible derivations. Izv. Math., 78, 5, 2014, 922-935,
DOI 10.1070/IM2014v078n05ABEH002713
[15] Kaygorodov, I., Popov, Yu.:
A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra, 456, 2016, 323-347,
DOI 10.1016/j.jalgebra.2016.02.016
[17] Khakimdzhanov, Yu.B.: Variété des lois d'algèbres de Lie nilpotentes. Geom. Dedicata, 40, 3, 1991, 269-295,
[18] Khudoyberdiyev, A.Kh., Ladra, M., Omirov, B.A.:
The classification of non-characteristically nilpotent Leibniz algebras. Algebr. Represent. Theory, 17, 3, 2014, 945-969,
DOI 10.1007/s10468-013-9426-y
[20] Ladra, M., Rikhsiboev, I.M., Turdibaev, R.M.:
Automorphisms and derivations of Leibniz algebras. Ukr. Math. J., 68, 7, 2016, 1062-1076,
DOI 10.1007/s11253-016-1277-3
[21] Loday, J.-L.: Une version non commutative des algèbres de Leibniz. Enseign. Math., 39, 3-4, 1993, 269-293,
[22] Moens, W.A.:
A characterisation of nilpotent Lie algebras by invertible Leibniz-derivations. Comm. Algebra, 41, 2013, 2427-2440,
DOI 10.1080/00927872.2012.659101
[23] Muller, D.:
Isometries of bi-invariant pseudo-Riemannian metrics on Lie groups. Geom. Dedicata, 29, 1, 1989, 65-96,
DOI 10.1007/BF00147471
[25] Omirov, B.A., Rakhimov, I.S.:
On Lie-like complex filiform Leibniz algebras. Bull. Aust. Math. Soc., 79, 3, 2009, 391-404,
DOI 10.1017/S000497270900001X
[26] Rakhimov, I.S., Sozan, J.: Description of nine dimensional complex filiform Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras. Int. J. Algebra, 3, 17-20, 2009, 969-980,