Previous |  Up |  Next

Article

Keywords:
Lie algebra; Leibniz algebra; derivation; pre-derivation; nilpotency; characteristically nilpotent algebra; strongly nilpotent algebra
Summary:
In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly nilpotent.
References:
[1] Albeverio, S., Ayupov, Sh.A., Omirov, B.A., Khudoyberdiyev, A.Kh.: $n$-dimensional filiform Leibniz algebras of length $(n-1)$ and their derivations. J. Algebra, 319, 6, 2008, 2471-2488, DOI 10.1016/j.jalgebra.2007.12.014
[2] Ancochea, J.M., Campoamor, R.: Characteristically Nilpotent Lie Algebras: A Survey. Extracta Math., 2, 2001, 153-210,
[3] Ayupov, Sh.A., Omirov, B.A.: On some classes of nilpotent Leibniz algebras. Siberian Math. J., 42, 1, 2001, 15-24, DOI 10.1023/A:1004829123402
[4] Bajo, I.: Lie algebras admitting non-singular prederivations. Indag. Mathem., 8, 4, 1997, 433-437,
[5] Burde, D.: Characteristically nilpotent Lie algebras and symplectic structures. Forum Math., 18, 5, 2006, 769-787, DOI 10.1515/FORUM.2006.038 | Zbl 1206.17009
[6] Burde, D.: Lie algebra prederivations and strongly nilpotent Lie algebras. Comm. Algebra, 30, 7, 2002, 3157-3175, DOI 10.1081/AGB-120004482
[7] Castro-Jiménez, F.J., Núñez Valdés, J.: On characteristically nilpotent filiform Lie algebras of dimension $9$. Comm. Algebra, 23, 8, 1995, 3059-3071,
[8] Dixmier, J., Lister, W.G.: Derivations of nilpotent Lie algebras. Proc. Amer. Math. Soc., 8, 1957, 155-158,
[9] Fialowski, A., Khudoyberdiyev, A.Kh., B.A.Omirov: A characterization of nilpotent Leibniz algebras. Algebr. Represent. Theory, 16, 5, 2013, 1489-1505, DOI 10.1007/s10468-012-9373-z
[10] Gómez, J.R., Jiménez-Merchán, A., Khakimdjanov, Y.: Low-dimensional filiform Lie algebras. J. Pure Appl. Algebra, 130, 2, 1998, 133-158,
[11] Gómez, J.R., Omirov, B.A.: On classification of complex filiform Leibniz algebras. Algebra Colloquium, 22, 1, 2015, 757-774, DOI 10.1142/S1005386715000668
[12] Hilton, P., Pedersen, J.: Catalan numbers, their generalization, and their uses. Math. Intelligencer, 13, 2, 1991, 64-75, DOI 10.1007/BF03024089
[13] Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Amer. Math. Soc., 6, 1955, 281-283, DOI 10.1090/S0002-9939-1955-0068532-9
[14] Kaygorodov, I., Popov, Yu.: Alternative algebras admitting derivations with invertible values and invertible derivations. Izv. Math., 78, 5, 2014, 922-935, DOI 10.1070/IM2014v078n05ABEH002713
[15] Kaygorodov, I., Popov, Yu.: A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra, 456, 2016, 323-347, DOI 10.1016/j.jalgebra.2016.02.016
[16] Khakimdzhanov, Yu.B.: Characteristically nilpotent Lie algebras. Math. USSR, Sb., 70, 1, 1991, 65-78, DOI 10.1070/SM1991v070n01ABEH001378
[17] Khakimdzhanov, Yu.B.: Variété des lois d'algèbres de Lie nilpotentes. Geom. Dedicata, 40, 3, 1991, 269-295,
[18] Khudoyberdiyev, A.Kh., Ladra, M., Omirov, B.A.: The classification of non-characteristically nilpotent Leibniz algebras. Algebr. Represent. Theory, 17, 3, 2014, 945-969, DOI 10.1007/s10468-013-9426-y
[19] Leger, G., Tôgô, S.: Characteristically nilpotent Lie algebras. Duke Math. J., 26, 4, 1959, 623-628, DOI 10.1215/S0012-7094-59-02660-2
[20] Ladra, M., Rikhsiboev, I.M., Turdibaev, R.M.: Automorphisms and derivations of Leibniz algebras. Ukr. Math. J., 68, 7, 2016, 1062-1076, DOI 10.1007/s11253-016-1277-3
[21] Loday, J.-L.: Une version non commutative des algèbres de Leibniz. Enseign. Math., 39, 3-4, 1993, 269-293,
[22] Moens, W.A.: A characterisation of nilpotent Lie algebras by invertible Leibniz-derivations. Comm. Algebra, 41, 2013, 2427-2440, DOI 10.1080/00927872.2012.659101
[23] Muller, D.: Isometries of bi-invariant pseudo-Riemannian metrics on Lie groups. Geom. Dedicata, 29, 1, 1989, 65-96, DOI 10.1007/BF00147471
[24] Omirov, B.A.: On derivations of filiform Leibniz algebras. Math. Notes, 77, 5--6, 2005, 677-685, DOI 10.1007/s11006-005-0068-1
[25] Omirov, B.A., Rakhimov, I.S.: On Lie-like complex filiform Leibniz algebras. Bull. Aust. Math. Soc., 79, 3, 2009, 391-404, DOI 10.1017/S000497270900001X
[26] Rakhimov, I.S., Sozan, J.: Description of nine dimensional complex filiform Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras. Int. J. Algebra, 3, 17-20, 2009, 969-980,
Partner of
EuDML logo