[2] Bednarz N., Włoch A., Włoch I.: The Fibonacci numbers in edge coloured unicyclic graphs. Util. Math. 106 (2018), 39–49.
[3] Bednarz U., Bród D., Szynal-Liana A., Włoch I., Wołowiec-Musiał M.:
On Fibonacci numbers in edge coloured trees. Opuscula Math. 37 (2017), no. 4, 479–490.
DOI 10.7494/OpMath.2017.37.4.479
[4] Bednarz U., Włoch I.:
Fibonacci and telephone numbers in extremal trees. Discuss. Math. Graph Theory 38 (2018), no. 1, 121–133.
DOI 10.7151/dmgt.1997
[5] Bednarz U., Włoch I., Wołowiec-Musiał M.: Total graph interpretation of the numbers of the Fibonacci type. J. Appl. Math. (2015), Art. ID 837917, 7 pages.
[6] Berge C.: Principles of Combinatorics. translated from the French Mathematics in Science and Engineering, 72, Academic Press, New York, 1971.
[7] Catarino P.:
On some identities and generating functions for $k$-Pell numbers. Int. J. Math. Anal. (Ruse) 7(2013), no. 37–40, 1877–1884.
DOI 10.12988/ijma.2013.35131
[8] Diestel R.:
Graph Theory. Graduate Texts in Mathematics, 173, Springer, Berlin, 2005.
Zbl 1218.05001
[10] Kiliç E.:
The generalized Pell $(p, i)$-numbers and their Binet formulas, combinatorial representations, sums. Chaos Solitons Fractals 40 (2009), no. 4, 2047–2063.
DOI 10.1016/j.chaos.2007.09.081
[11] Koshy T.: Pell and Pell-Lucas Numbers with Applications. Springer, New York, 2014.
[12] Kwaśnik M., Włoch I.: The total number of generalized stable sets and kernels of graphs. Ars Combin. 55 (2000), 139–146.
[13] Marques D., Trojovský P.: On characteristic polynomial of higher order generalized Jacobsthal numbers. Adv. Difference Equ. (2019), Paper No. 392, 9 pages.
[15] Stakhov A. P.: An Introduction to the Algorithmic Theory of Measurement. Sovetskoe Radio, Moscow, 1977 (Russian).
[16] Prodinger H., Tichy R. F.: Fibonacci numbers of graphs. Fibonacci Quart. 20 (1982), no. 1, 16–21.
[17] Włoch I.: On generalized Pell numbers and their graph representations. Comment. Math. 48 (2008), no. 2, 169–175.