Previous |  Up |  Next

Article

MSC: 97C30, 97i99
Summary:
The article focuses on students' understanding of graphs of functions. Interviews were conducted with 22 students in who solved some tasks on classifications of graphs of functions. For the analysis of data, we used the theory of prototypes and the theory of exemplification and the framework of hypothetical learning trajectories. Some extracts from the interviews are given to illustrate main results. For instance, we observed that students focus on various aspects of the graph (linearity, passing through the origin of the coordinate system, etc.) and mark them as important. As students acquire more experience with graphs of functions, they focus more on the curve of the graph and the importance of aspects changes. Nevertheless, some of them stay strong (real context of the graph) during the whole process and there are important mathematical aspects (as continuity) which are systematically underestimated.
References:
[1] Baroody, A. J., Cibulskis, M., Lai, M., Li, X.: Comments on the use of learning trajectories in curriculum development and research. (2004). Mathematical Thinking and Learning, 6(2), 227-260.
[2] Edwards, C. J.: The historical development of the calculus. (1994). Springer.
[3] Eisenmann, P.: O experimentu se spojitostí funkce na střední škole. (1996). Učitel matematiky, 4(4). 213-219.
[4] Eisenmann, P.: Zlatý vrch nad Českou Kamenicí aneb funkce v přírodě. (2007). Matematika, Fyzika, Informatika, 16(6), 336-338.
[5] Goldstone, R. L.: The role of similarity in categorization: Providing a groundwork. (1994). Cognition, 52(2), 125-157. DOI 10.1016/0010-0277(94)90065-5
[6] Hejný, M.: Vyučování matematice orientované na budování schémat: aritmetika 1. stupně. (2014). Praha: Univerzita Karlova v Praze, Pedagogická fakulta.
[7] Hejný, M., Kuřina, F.: Dítě, škola a matematika: konstruktivistické přístupy k vyučování. (2001). Praha: Portál.
[8] Hershkowitz, R.: Visualization in Geometry - Two Sides of the Coin. (1989). Focus on learning problems in mathematics, 11, 61-76.
[9] Janda, D. : Funkční myšlení žáků středních škol. (2013). Dostupné z https://is.cuni.cz/webapps/zzp/detail/119283
[10] Kopáčková, A.: Nejen žákovské představy o funkcích. (2002). Pokroky matematiky, fyziky a astronomie, 47(2), 149-161.
[11] Kopáčková, A.: Fylogeneze pojmu funkce. (2001). In J. Bečvář & E. Fuchs, Matematika v proměnách věků II (46-80). Praha: Prometheus.
[12] Lomtatidze, L.: Historický vývoj pojmu křivka. (2007). Brno: Nadace Universitas.
[13] Mervis, C. B., Rosch, E.: Categorization of natural objects. (1981). Annual review of psychology, 32(1), 89-115. DOI 10.1146/annurev.ps.32.020181.000513
[14] Odvárko, O., Kadleček, J.: Matematika pro 7. ročník ZŠ (1.-3. díl). (1998). Praha: Prometheus.
[15] Piaget, J.: Epistemology and psychology of functions. (1977). 23. Springer Science & Business Media.
[16] Watson, A., Mason, J.: Mathematics as a constructive activity: Learners generating examples. (2006). Routledge.
Partner of
EuDML logo