[5] Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics R. Decuypere, G. Dibelius Technologisch Instituut, Antwerpen (1997), 99-108.
[7] Brenner, S. C., Owens, L., Sung, L.-Y.:
A weakly over-penalized symmetric interior penalty method. ETNA, Electron. Tran. Numer. Anal. 30 (2008), 107-127.
MR 2480072 |
Zbl 1171.65077
[10] Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous finite elements for diffusion problems. Francesco Brioschi (1824-1897) Convegno di Studi Matematici Istituto Lombardo, Accademia di Scienze e Lettere, Milan (1999), 197-217.
[11] Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.:
Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equations 16 (2000), 365-378.
DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y |
MR 1765651 |
Zbl 0957.65099
[13] Česenek, J., Feistauer, M.:
Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion. SIAM J. Numer. Anal. 50 (2012), 1181-1206.
DOI 10.1137/110828903 |
MR 2970739 |
Zbl 1312.65157
[32] Moon, K.-S., Nochetto, R. H., Petersdorff, T. von, Zhang, C.-S.:
A posteriori error analysis for parabolic variational inequalities. ESAIM, Math. Model. Numer. Anal. 41 (2007), 485-511.
DOI 10.1051/m2an:2007029 |
MR 2355709 |
Zbl 1142.65053
[38] Riviére, B., Wheeler, M. F., Girault, V.:
A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001), 902-931.
DOI 10.1137/S003614290037174X |
MR 1860450 |
Zbl 1010.65045
[40] Savaré, G.:
Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl. 6 (1996), 377-418.
MR 1411975 |
Zbl 0858.35073
[44] Yang, X., Wang, G., Gu, X.:
Numerical solution for a parabolic obstacle problem with nonsmooth initial data. Numer. Methods Partial Differ. Equations 30 (2014), 1740-1754.
DOI 10.1002/num.21893 |
MR 3246191 |
Zbl 1312.65107
[45] Zhang, C.-S.:
Adaptive Finite Element Methods for Variational Inequalities: Theory and Application in Finance: Ph.D. Thesis. University of Maryland, College Park (2007).
MR 2711028