Previous |  Up |  Next

Article

Keywords:
linear differential equation; growth of solution; finite singular point
Summary:
In this paper, we investigate the growth of solutions of a certain class of linear differential equation where the coefficients are analytic functions in the closed complex plane except at a finite singular point. For that, we will use the value distribution theory of meromorphic functions developed by Rolf Nevanlinna with adapted definitions.
References:
[1] Bieberbach, L.: Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt. Die Grundlehren der Mathematischen Wissenschaften 66. Springer, Berlin (1965), German. MR 0176133 | Zbl 0124.04603
[2] Fettouch, H., Hamouda, S.: Growth of local solutions to linear differential equations around an isolated essential singularity. Electron. J. Differ. Equ. 2016 (2016), Paper No. 226, 10 pages. MR 3547415 | Zbl 1352.34113
[3] Hamouda, S.: Finite and infinite order solutions of a class of higher order linear differential equations. Aust. J. Math. Anal. Appl. 9 (2012), Article No. 10, 9 pages. MR 2903775 | Zbl 1238.34152
[4] Hamouda, S.: Properties of solutions to linear differential equations with analytic coefficients in the unit disc. Electron. J. Differ. Equ. 2012 (2012), Paper No. 177, 8 pages. MR 2991411 | Zbl 1254.34121
[5] Hamouda, S.: Iterated order of solutions of linear differential equations in the unit disc. Comput. Methods Funct. Theory 13 (2013), 545-555. DOI 10.1007/s40315-013-0034-y | MR 3138352 | Zbl 1296.34175
[6] Hamouda, S.: The possible orders of growth of solutions to certain linear differential equations near a singular point. J. Math. Anal. Appl. 458 (2018), 992-1008. DOI 10.1016/j.jmaa.2017.10.005 | MR 3724712 | Zbl 1382.34097
[7] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[8] Khrystiyanyn, A. Ya., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I. Mat. Stud. 23 (2005), 19-30. MR 2150985 | Zbl 1066.30036
[9] Kinnunen, L.: Linear differential equations with solutions of finite iterated order. Southeast Asian Bull. Math. 22 (1998), 385-405. MR 1811183 | Zbl 0934.34076
[10] Kondratyuk, A., Laine, I.: Meromorphic functions in multiply connected domains. Fourier Series Methods in Complex Analysis I. Laine University of Joensuu 10. Department of Mathematics, University of Joensuu, Joensuu (2006), 9-111. MR 2296161 | Zbl 1144.30013
[11] Korhonen, R.: Nevanlinna theory in an annulus. Value Distribution Theory and Related Topics Advances in Complex Analysis and Its Applications 3. Kluwer Academic Publishers, Boston (2004), 167-179. DOI 10.1007/1-4020-7951-6_7 | MR 2173300 | Zbl 1102.30025
[12] Laine, I.: Nevanlinna Theory and Complex Differential Equations. De Gruyter Studies in Mathematics 15. W. de Gruyter, Berlin (1993). DOI 10.1515/9783110863147 | MR 1207139 | Zbl 0784.30002
[13] Laine, I., Yang, R.: Finite order solutions of complex linear differential equations. Electron. J. Differ. Equ. 2004 (2004), Paper No. 65, 8 pages. MR 2057652 | Zbl 1063.30031
[14] Lund, M. E., Ye, Z.: Logarithmic derivatives in annuli. J. Math. Anal. Appl. 356 (2009), 441-452. DOI 10.1016/j.jmaa.2009.03.025 | MR 2524280 | Zbl 1176.30080
[15] Tsuji, M.: Potential Theory in Modern Function Theory. Chelsea Publishing Company, New York (1975). MR 0414898 | Zbl 0322.30001
[16] Whittaker, J. M.: The order of the derivative of a meromorphic function. J. Lond. Math. Soc. 11 (1936), 82-87. DOI 10.1112/jlms/s1-11.2.82 | MR 1574768 | Zbl 0014.02504
[17] Yang, L.: Value Distribution Theory. Springer, Berlin (1993). DOI 10.1007/978-3-662-02915-2 | MR 1301781 | Zbl 0790.30018
Partner of
EuDML logo