[2] Çaylı, G. D., Karaçal, F.:
Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 394-417.
DOI |
MR 3684677
[3] D.Çaylı, G., Karaçal, F., Mesiar, R.:
On a new class of uninorms on bounded lattices. Inf. Sci. 367 - 368 (2016), 221-231.
DOI |
MR 3684677
[4] Dan, Y. X., Hu, B. Q.:
A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94.
DOI |
MR 4073387
[5] Baets, B. De, Mesiar, R.:
Triangular norm on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75.
DOI |
MR 1685810
[6] Cooman, G. De, Kerre, E. E.:
Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310.
MR 1280148 |
Zbl 0814.04005
[7] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: Proc. EUFIT '96, Aachen 1996, pp. 22-26.
[8] Everett, C. J.:
Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525.
DOI |
MR 0010556
[9] Ji, W.:
Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.
DOI |
MR 4174507
[10] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.
DOI |
MR 3291484
[11] Ouyang, Y., Zhang, H. P.:
Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.
DOI |
MR 4109063
[12] Schweizer, B., Sklar, A.:
Statistical metric space. Pac. J. Math. 10 (1960), 313-334.
DOI |
MR 0115153
[13] Xie, A. F., Li, S. J.:
On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104.
DOI |
MR 4073391
[14] Yager, R. R., Rybalov, A.:
Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.
DOI |
MR 1389951