Previous |  Up |  Next

Article

Keywords:
nonlinear homogeneous system; varying delay; stability; Lyapunov Razumikhin function
Summary:
In this paper, we analyze the stability of homogeneous delay systems based on the Lyapunov Razumikhin function in the presence of a varying parameter. In addition, we show the stability of perturbed time delay systems when the nominal part is homogeneous.
References:
[1] Aleksandrov, A. Yu., Zhabko, A. .P.: Delay-independent stability of homogeneous systems. Appl. Math. Lett. 34 (2014), 43-50. DOI  | MR 3212227
[2] Bacciotti, A., Rosier, L.: Lyapunov Functions and Stability in Control Theory. Springer 2005. MR 2146587
[3] Cao, Y., Samidurai, R., Sriraman, R.: Stability and sissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays. J. Artif. Intell. Soft Comput. Res. 9 (2019), 3, 189-204. DOI 
[4] Efimov, D., Perruquetti, W., Richard, J. P.: Development of homogeneity concept for time-delay systems. SIAM J. Control Optim. 52 (2014), 3, 1547-1566. DOI  | MR 3200418
[5] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Boston 2003. MR 3075002
[6] Hale, J. K., Verduyn, L. S. M.: Introduction to Functional-Differential Equations. Springer-Verlag, New York 1993. MR 1243878
[7] Hermes, H.: Asymptotically stabilizing feedback controls. J. Different. Equations 92 (1991), 1, 76-89. DOI  | MR 1113589
[8] Hermes, H.: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. Differential Equations Stability Control 109 (1991), 1, 249-260. MR 1096761
[9] Hu, H., Yuan, X., Huang, L., Huang, C.: Global dynamics of an SIRS model with demographics and transfer from ifectious to susceptible on heterogeneous networks. Math. Biosciences Engrg. 16 (2019), 5729-5749. DOI  | MR 4032648
[10] Huang, C., Cao, J., Wen, F., Yang, X.: Stability Analysis of SIR Model with Distributed Delay on Complex Networks. Plo One 08 (2016), 11, e0158813. DOI 
[11] Huang, C., Qiao, Y., Huang, L., Agarwal, R.: Dynamical behaviors of a Food-Chain model with stage structure and time delays. Adv. Difference Equations 186 (2018), 12. DOI  | MR 3803384
[12] Huang, C., Yang, Z., Yi, T., Zou, X.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differential Equations 256 (2014), 2101-2114. DOI  | MR 3160438
[13] Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator. Int. J. Bifurcation Chaos 29 (2019), 7, 1950091-23. DOI  | MR 3981039
[14] Kawski, M.: Homogeneous stabilizing feedback laws. Control Theory Advanced Technol. 6 (1990), 4, 497-516. MR 1092775
[15] Khalil, K. H.: Nonlinear Systems. (Third edition). Prentice-Hall, Upper Saddle River, NJ 2002.
[16] Krasovskii, N. N.: Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford 1963. MR 0147744
[17] Lin, Y., Sontag, E. D., Wang, Y.: Input to State Stabilizability for Parametrized Families of Systems. Int. J. Robust Nonlinear Control 5 (1995), 3, 187-205. DOI  | MR 1329624
[18] Long, X., S.Gong: New results on stability of {n}icholson's blowflies {e}quation with multiple pairs of {t}ime-{v}arying delays. Appl. Math. Lett. 100 (2019), 9, 106027. DOI  | MR 4008616
[19] Massera, J. L.: Contributions to stability {t}heory. Ann. Math.Second Series 64 (1958), 7, 182-206. DOI 10.2307/1969955 | MR 0079179
[20] Raja, R., Karthik Raja, U. , Samidurai, R., Leelamani, A.: Dissipativity of discrete-time {BAM} stochastic neural networks with Markovian switching and impulses. J. Franklin Inst. 350 (2013), 10, 3217-3247. DOI  | MR 3123415
[21] Razumikhin, B. S.: The application of Lyapunov's method to problems in the stability of systems with delay. Automat. Remote Control 21 (1960), 515-520. MR 0118639
[22] Rosier, L.: Homogeneous {L}yapunov function for {h}omogeneous {c}ontinuous {v}ector fields. Systems Control Lett. 19 (1992), 6, 467-473. DOI  | MR 1195304
[23] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization. Math. Control Signals Systems 9 (1996), 3, 34-58. DOI  | MR 1410047
[24] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems. Pergamon Press, New York - Oxford - London - Paris; Jerusalem Academic Press, Jerusalem 1962. MR 0151695
Partner of
EuDML logo