Previous |  Up |  Next

Article

Keywords:
convergence space; cardinal function; inequality; set-theoretic topology
Summary:
We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems in set-theoretic topology. We show that a statement analogous to that in the former theorem is valid for a family of almost topological convergences, whereas statements analogous to those in the latter theorems hold for a pretopologically Hausdorff convergence.
References:
[1] Alexandroff, P. S., Urysohn, P. S.: Über kompakte topologische Räume. Akad. Nauk SSSR, Trudy Mat. Inst. Steklov 31 (1950), 94 pages Russian. MR 0043445 | Zbl 0041.31504
[2] Čech, E.: Topological Spaces. Publishing House of the Czechoslovak Academy of Sciences, Prague; John Wiley & Sons, London (1966). MR 0211373 | Zbl 0141.39401
[3] Choquet, G.: Convergences. Ann. Univ. Grenoble, Sect. Sci. Math. Phys., II. Ser. 23 (1948), 57-112. MR 0025716 | Zbl 0031.28101
[4] Dolecki, S., Gauld, D.: Irregularity. Topology Appl. 154 (2007), 1565-1580 Erratum ibid. 159 2012 3658-3659. DOI 10.1016/j.topol.2006.11.009 | MR 2317063 | Zbl 1119.54002
[5] Dolecki, S., Mynard, F.: Convergence Foundations of Topology. World Scientific, Hackensack (2016). DOI 10.1142/9012 | MR 3497013 | Zbl 1345.54001
[6] Katětov, M.: Über $H$-abgeschlossene und bikompakte Räume. Čas. Pěst. Mat. Fys. 69 (1940), 36-49 German. DOI 10.21136/CPMF.1940.121983 | MR 0001912 | Zbl 0022.41203
[7] Katětov, M.: On $H$-closed extensions of topological spaces. Čas. Pěst. Mat. Fys. 72 (1947), 17-32. DOI 10.21136/CPMF.1947.109025 | MR 0022069 | Zbl 0041.51504
[8] Reynolds, J. P.: Hausdorff closedness in the convergence setting. Topol. Proc. 49 (2017), 135-152. MR 3546386 | Zbl 1373.54006
[9] Rudin, M. E.: Lectures on Set Theoretic Topology. CBMS Regional Conference Series in Mathematics 23. AMS, Providence (1975). DOI 10.1090/cbms/023 | MR 0367886 | Zbl 0318.54001
Partner of
EuDML logo