Previous |  Up |  Next

Article

Title: Constructing modular forms from harmonic Maass Jacobi forms (English)
Author: Xiong, Ran
Author: Zhou, Haigang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 455-473
Summary lang: English
.
Category: math
.
Summary: We construct a family of modular forms from harmonic Maass Jacobi forms by considering their Taylor expansion and using the method of holomorphic projection. As an application we present a certain type Hurwitz class relations which can be viewed as a generalization of Mertens' result in M. H. Mertens (2016). (English)
Keyword: modular form
Keyword: harmonic Maass Jacobi form
Keyword: holomorphic projection
Keyword: Hurwitz class number
MSC: 11F30
MSC: 11F37
MSC: 11F50
idZBL: 07361079
idMR: MR4263180
DOI: 10.21136/CMJ.2020.0427-19
.
Date available: 2021-05-20T13:43:43Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148915
.
Reference: [1] Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications.American Mathematical Society Colloquium Publications 64. American Mathematical Society, Providence (2017). Zbl 06828732, MR 3729259, 10.1090/coll/064
Reference: [2] Bringmann, K., Richter, O. K.: Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms.Adv. Math. 225 (2010), 2298-2315. Zbl 1264.11039, MR 2680205, 10.1016/j.aim.2010.03.033
Reference: [3] Choie, Y.: Correspondence among Eisenstein series $E_{2,1}(\tau,z)$, $H_{\frac{3}{2}}(\tau)$ and $E_{2}(\tau)$.Manuscr. Math. 93 (1997), 177-187. Zbl 0890.11017, MR 1464364, 10.1007/BF02677465
Reference: [4] Cohen, H.: Sums involving the values at negative integers of $L$-functions of quadratic characters.Math. Ann. 217 (1975), 271-285. Zbl 0311.10030, MR 0382192, 10.1007/BF01436180
Reference: [5] Eichler, M., Zagier, D.: The Theory of Jacobi Forms.Progress in Mathematics 55. Birkhäuser, Boston (1985). Zbl 0554.10018, MR 0781735, 10.1007/978-1-4684-9162-3
Reference: [6] Gross, B. H., Zagier, D.: Heegner points and derivatives of $L$-series.Invent. Math. 84 (1986), 225-320. Zbl 0608.14019, MR 0833192, 10.1007/BF01388809
Reference: [7] Imamoğlu, Ö., Raum, M., Richter, O. K.: Holomorphic projections and Ramanujan's mock theta functions.Proc. Natl. Acad. Sci. USA 111 (2014), 3961-3967. Zbl 1355.11039, MR 3200180, 10.1073/pnas.1311621111
Reference: [8] Mertens, M. H.: Mock Modular Forms and Class Numbers of Quadratic Forms: PhD Thesis.Universität zu Köln, Köln (2014), Available at \let \relax\brokenlink{http://kups.ub.uni-koeln.de/id/{eprint/5686}}. MR 3377995
Reference: [9] Mertens, M. H.: Eichler-Selberg type identities for mixed mock modular forms.Adv. Math. 301 (2016), 359-382. Zbl 1404.11054, MR 3539378, 10.1016/j.aim.2016.06.016
Reference: [10] Sturm, J.: Projections of ${{\mathbb C}}^{\infty}$ automorphic forms.Bull. Am. Math. Soc., New Ser. 2 (1980), 435-439. Zbl 0433.10013, MR 561527, 10.1090/S0273-0979-1980-14757-6
.

Files

Files Size Format View
CzechMathJ_71-2021-2_10.pdf 291.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo