Previous |  Up |  Next

Article

Title: Monotonicity of first eigenvalues along the Yamabe flow (English)
Author: Zhang, Liangdi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 387-401
Summary lang: English
.
Category: math
.
Summary: We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$ $(c\geq \frac 12(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac 14 (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow. (English)
Keyword: monotonicity
Keyword: first eigenvalue
Keyword: Witten-Laplacian operator
Keyword: Yamabe flow
MSC: 58C40
idZBL: 07361075
idMR: MR4263176
DOI: 10.21136/CMJ.2020.0392-19
.
Date available: 2021-05-20T13:41:37Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148911
.
Reference: [1] Cao, X.: Eigenvalues of $(-\Delta+\frac{R}{2})$ on manifolds with nonnegative curvature operator.Math. Ann. 337 (2007), 435-441. Zbl 1105.53051, MR 2262792, 10.1007/s00208-006-0043-5
Reference: [2] Cao, X.: First eigenvalues of geometric operators under the Ricci flow.Proc. Am. Math. Soc. 136 (2008), 4075-4078. Zbl 1166.58007, MR 2425749, 10.1090/S0002-9939-08-09533-6
Reference: [3] Chow, B., Lu, P., Ni, L.: Hamilton's Ricci Flow.Graduate Studies in Mathematics 77. American Mathematical Society, Providence (2006). Zbl 1118.53001, MR 2274812, 10.1090/gsm/077
Reference: [4] Fang, S., Xu, H., Zhu, P.: Evolution and monotonicity of eigenvalues under the Ricci flow.Sci. China, Math. 58 (2015), 1737-1744. Zbl 1327.53084, MR 3368179, 10.1007/s11425-014-4943-7
Reference: [5] Fang, S., Yang, F.: First eigenvalues of geometric operators under the Yamabe flow.Bull. Korean Math. Soc. 53 (2016), 1113-1122. Zbl 1350.53051, MR 3534307, 10.4134/BKMS.b150530
Reference: [6] Fang, S., Yang, F., Zhu, P.: Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow.Glasg. Math. J. 59 (2017), 743-751. Zbl 1408.53088, MR 3682011, 10.1017/S0017089516000537
Reference: [7] Guo, H., Philipowski, R., Thalmaier, A.: Entropy and lowest eigenvalue on evolving manifolds.Pac. J. Math. 264 (2013), 61-81. Zbl 1275.53058, MR 3079761, 10.2140/pjm.2013.264.61
Reference: [8] Ho, P. T.: First eigenvalues of geometric operators under the Yamabe flow.Ann. Glob. Anal. Geom. 54 (2018), 449-472. Zbl 1412.53092, MR 3878837, 10.1007/s10455-018-9608-2
Reference: [9] Kleiner, B., Lott, J.: Notes on Perelman's papers.Geom. Topol. 12 (2008), 2587-2858. Zbl 1204.53033, MR 2460872, 10.2140/gt.2008.12.2587
Reference: [10] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.Available at https://arxiv.org/abs/math/0211159 (2002), 39 pages. Zbl 1130.53001
Reference: [11] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators.Academic Press, New York (1978). Zbl 0401.47001, MR 0493421
Reference: [12] Topping, P.: Lectures on the Ricci Flow.London Mathematical Society Lecture Note Series 325. Cambridge University Press, Cambridge (2006). Zbl 1105.58013, MR 2265040, 10.1017/CBO9780511721465
Reference: [13] Zhao, L.: The first eigenvalue of the Laplace operator under Yamabe flow.Math. Appl. 24 (2011), 274-278. MR 2816261
Reference: [14] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of the $m$th mean curvature flow.Result. Math. 63 (2013), 937-948. Zbl 1270.53089, MR 3057347, 10.1007/s00025-012-0242-1
Reference: [15] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of mean curvature flow.Math. Methods Appl. Sci. 37 (2014), 744-751. Zbl 1288.53068, MR 3180635, 10.1002/mma.2835
.

Files

Files Size Format View
CzechMathJ_71-2021-2_6.pdf 233.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo