Title:
|
Monotonicity of first eigenvalues along the Yamabe flow (English) |
Author:
|
Zhang, Liangdi |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
387-401 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$ $(c\geq \frac 12(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac 14 (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow. (English) |
Keyword:
|
monotonicity |
Keyword:
|
first eigenvalue |
Keyword:
|
Witten-Laplacian operator |
Keyword:
|
Yamabe flow |
MSC:
|
58C40 |
idZBL:
|
07361075 |
idMR:
|
MR4263176 |
DOI:
|
10.21136/CMJ.2020.0392-19 |
. |
Date available:
|
2021-05-20T13:41:37Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148911 |
. |
Reference:
|
[1] Cao, X.: Eigenvalues of $(-\Delta+\frac{R}{2})$ on manifolds with nonnegative curvature operator.Math. Ann. 337 (2007), 435-441. Zbl 1105.53051, MR 2262792, 10.1007/s00208-006-0043-5 |
Reference:
|
[2] Cao, X.: First eigenvalues of geometric operators under the Ricci flow.Proc. Am. Math. Soc. 136 (2008), 4075-4078. Zbl 1166.58007, MR 2425749, 10.1090/S0002-9939-08-09533-6 |
Reference:
|
[3] Chow, B., Lu, P., Ni, L.: Hamilton's Ricci Flow.Graduate Studies in Mathematics 77. American Mathematical Society, Providence (2006). Zbl 1118.53001, MR 2274812, 10.1090/gsm/077 |
Reference:
|
[4] Fang, S., Xu, H., Zhu, P.: Evolution and monotonicity of eigenvalues under the Ricci flow.Sci. China, Math. 58 (2015), 1737-1744. Zbl 1327.53084, MR 3368179, 10.1007/s11425-014-4943-7 |
Reference:
|
[5] Fang, S., Yang, F.: First eigenvalues of geometric operators under the Yamabe flow.Bull. Korean Math. Soc. 53 (2016), 1113-1122. Zbl 1350.53051, MR 3534307, 10.4134/BKMS.b150530 |
Reference:
|
[6] Fang, S., Yang, F., Zhu, P.: Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow.Glasg. Math. J. 59 (2017), 743-751. Zbl 1408.53088, MR 3682011, 10.1017/S0017089516000537 |
Reference:
|
[7] Guo, H., Philipowski, R., Thalmaier, A.: Entropy and lowest eigenvalue on evolving manifolds.Pac. J. Math. 264 (2013), 61-81. Zbl 1275.53058, MR 3079761, 10.2140/pjm.2013.264.61 |
Reference:
|
[8] Ho, P. T.: First eigenvalues of geometric operators under the Yamabe flow.Ann. Glob. Anal. Geom. 54 (2018), 449-472. Zbl 1412.53092, MR 3878837, 10.1007/s10455-018-9608-2 |
Reference:
|
[9] Kleiner, B., Lott, J.: Notes on Perelman's papers.Geom. Topol. 12 (2008), 2587-2858. Zbl 1204.53033, MR 2460872, 10.2140/gt.2008.12.2587 |
Reference:
|
[10] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.Available at https://arxiv.org/abs/math/0211159 (2002), 39 pages. Zbl 1130.53001 |
Reference:
|
[11] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators.Academic Press, New York (1978). Zbl 0401.47001, MR 0493421 |
Reference:
|
[12] Topping, P.: Lectures on the Ricci Flow.London Mathematical Society Lecture Note Series 325. Cambridge University Press, Cambridge (2006). Zbl 1105.58013, MR 2265040, 10.1017/CBO9780511721465 |
Reference:
|
[13] Zhao, L.: The first eigenvalue of the Laplace operator under Yamabe flow.Math. Appl. 24 (2011), 274-278. MR 2816261 |
Reference:
|
[14] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of the $m$th mean curvature flow.Result. Math. 63 (2013), 937-948. Zbl 1270.53089, MR 3057347, 10.1007/s00025-012-0242-1 |
Reference:
|
[15] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of mean curvature flow.Math. Methods Appl. Sci. 37 (2014), 744-751. Zbl 1288.53068, MR 3180635, 10.1002/mma.2835 |
. |