[1] Altassan, A., Luca, F.:
On the Diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$. J. Number Theory 217 (2020), 256–277.
MR 4140628
[2] Behera, A., Panda, G.K.:
On the square roots of triangular numbers. Fibonacci Quart. 37 (2) (1999), 98–105.
MR 1690458
[3] Catarino, P., Campos, H., Vasco, P.:
On some identities for balancing and cobalancing numbers. Ann. Math. Inform. 45 (2015), 11–24.
MR 3438809
[4] Gueth, K., Luca, F., Szalay, L.:
Solutions to $F_1^p+2F_2^p+\dots +kF_k^p=F_n^q$ with small given exponents. Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33–37.
MR 4080788
[5] Horadam, A.F.:
Pell identities. Fibonacci Quart. 9 (3) (1971), 245–263.
MR 0308029
[6] Niven, I., Zuckerman, H.S., Montgomery, H.L.:
An Introduction to the Theory of Numbers. fifth edition ed., John Wiley & Sons, Inc., New York, 1991.
MR 1083765
[7] Olajos, P.:
Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Ann. Math. Inform. 37 (2010), 125–138.
MR 2753032
[8] Panda, G.K.:
Some Fascinating Properties of Balancing Numbers. Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185–189.
MR 2463534
[9] Panda, G.K., Ray, P.K.:
Some links of balancing and cobalancing numbers with Pell and associated Pell numbers. Bul. Inst. Math. Acad. Sinica 6 (2011), 41–72.
MR 2850087
[10] Ray, P.K.: Balancing and cobalancing numbers. Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009.
[11] Soydan, G., Németh, L., Szalay, L.:
On the diophantine equation $\sum _{j=1}^{k}jF_j^p=F_n^q$. Arch. Math. (Brno) 54 (2008), 177–188.
MR 3847324