Previous |  Up |  Next

Article

Keywords:
evolution equation; state-dependent delay; Lyapunov stability; virus infection model
Summary:
A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous initial functions which is appropriate for therapy, including drug administration.
References:
[1] Beddington, J. R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecology 44 (1975), 331-340. DOI 10.2307/3866
[2] DeAngelis, D. L., Goldstein, R. A., O'Neill, R. V.: A model for trophic interaction. Ecology 56 (1975), 881-892. DOI 10.2307/1936298
[3] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Applied Mathematical Sciences 110. Springer, New York (1995). DOI 10.1007/978-1-4612-4206-2 | MR 1345150 | Zbl 0826.34002
[4] Driver, R. D.: A two-body problem of classical electrodynamics: the one-dimensional case. Ann. Phys. 21 (1963), 122-142. DOI 10.1016/0003-4916(63)90227-6 | MR 0151110 | Zbl 0108.40705
[5] Global Hepatitis Report 2017. World Health Organization, Geneva (2017). Available at http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf
[6] Gourley, S. A., Kuang, Y., Nagy, J. D.: Dynamics of a delay differential equation model of hepatitis B virus infection. J. Biol. Dyn. 2 (2008), 140-153. DOI 10.1080/17513750701769873 | MR 2428891 | Zbl 1140.92014
[7] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, Berlin (1977). DOI 10.1007/978-1-4612-9892-2 | MR 0508721 | Zbl 0352.34001
[8] Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Functional differential equations with state-dependent delays: Theory and applications. Handbook of Differential Equations: Ordinary Differential Equations. Vol. 3 Elsevier, North Holland, Amsterdam (2006), 435-545 A. Cañada et al. DOI 10.1016/S1874-5725(06)80009-X | MR 2457636
[9] Huang, G., Ma, W., Takeuchi, Y.: Global properties for virus dynamics model with \hbox{Beddington}-DeAngelis functional response. Appl. Math. Lett. 22 (2009), 1690-1693. DOI 10.1016/j.aml.2009.06.004 | MR 2569065 | Zbl 1178.37125
[10] Huang, G., Ma, W., Takeuchi, Y.: Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 24 (2011), 1199-1203. DOI 10.1016/j.aml.2011.02.007 | MR 2784182 | Zbl 1217.34128
[11] Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69 (2007), 1871-1886. DOI 10.1007/s11538-007-9196-y | MR 2329184 | Zbl 1298.92101
[12] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering 191. Academic Press, Boston (1993). DOI 10.1016/s0076-5392(08)x6164-8 | MR 1218880 | Zbl 0777.34002
[13] Lyapunov, A. M.: The General Problem of the Stability of Motion. Charkov Mathematical Society, Charkov (1892), Russian \99999JFM99999 24.0876.02. MR 1229075
[14] McCluskey, C. C.: Using Lyapunov functions to construct Lyapunov functionals for delay differential equations. SIAM J. Appl. Dyn. Syst. 14 (2015), 1-24. DOI 10.1137/140971683 | MR 3296596 | Zbl 1325.34081
[15] Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses. Science 272 (1996), 74-79. DOI 10.1126/science.272.5258.74
[16] Perelson, A. S., Nelson, P.: Mathematical analysis of HIV dynamics in vivo. SIAM Rev. 41 (1999), 3-44. DOI 10.1137/S0036144598335107 | MR 1669741 | Zbl 1078.92502
[17] Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271 (1996), 1582-1586. DOI 10.1126/science.271.5255.1582
[18] Rezounenko, A. V.: Differential equations with discrete state-dependent delay: Uniqueness and well-posedness in the space of continuous functions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3978-3986. DOI 10.1016/j.na.2008.08.006 | MR 2515314 | Zbl 1163.35494
[19] Rezounenko, A. V.: Non-linear partial differential equations with discrete state-dependent delays in a metric space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1707-1714. DOI 10.1016/j.na.2010.05.005 | MR 2661353 | Zbl 1194.35488
[20] Rezounenko, A. V.: A condition on delay for differential equations with discrete state-dependent delay. J. Math. Anal. Appl. 385 (2012), 506-516. DOI 10.1016/j.jmaa.2011.06.070 | MR 2834276. | Zbl 1242.34136
[21] Rezounenko, A. V.: Local properties of solutions to non-autonomous parabolic PDEs with state-dependent delays. J. Abstr. Differ. Equ. Appl. 2 (2012), 56-71. MR 3010014 | Zbl 1330.35493
[22] Rezounenko, A. V.: Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1-15. DOI 10.14232/ejqtde.2016.1.79 | MR 3547455 | Zbl 1389.93130
[23] Rezounenko, A. V.: Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 1547-1563. DOI 10.3934/dcdsb.2017074 | MR 3639177 | Zbl 1359.93209
[24] Rezounenko, A. V.: Viral infection model with diffusion and state-dependent delay: a case of logistic growth. Proc. Equadiff 2017 Conf., Bratislava, 2017 Slovak University of Technology, Spektrum STU Publishing (2017), 53-60 K. Mikula et al. MR 3639177
[25] Smith, H. L.: Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs 41. AMS, Providence (1995). DOI 10.1090/surv/041 | MR 1319817 | Zbl 0821.34003
[26] Walther, H.-O.: The solution manifold and $C\sp 1$-smoothness for differential equations with state-dependent delay. J. Diff. Equations 195 (2003), 46-65. DOI 10.1016/j.jde.2003.07.001 | MR 2019242 | Zbl 1045.34048
[27] Wang, X., Liu, S.: A class of delayed viral models with saturation infection rate and immune response. Math. Methods Appl. Sci. 36 (2013), 125-142. DOI 10.1002/mma.2576 | MR 3008329 | Zbl 1317.34171
[28] Wang, J., Pang, J., Kuniya, T., Enatsu, Y.: \kern-.27ptGlobal threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays. Appl. Math. Comput. 241 (2014), 298-316. DOI 10.1016/j.amc.2014.05.015 | MR 3223430. | Zbl 1334.92431
[29] Wodarz, D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. General Virology 84 (2003), 1743-1750. DOI 10.1099/vir.0.19118-0
[30] Wodarz, D.: Killer Cell Dynamics. Mathematical and Computational Approaches to Immunology. Interdisciplinary Applied Mathematics 32. Springer, New York (2007). DOI 10.1007/978-0-387-68733-9 | MR 2273003 | Zbl 1125.92032
[31] Xu, S.: Global stability of the virus dynamics model with Crowley-Martin functional response. Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Paper No. 9, 10 pages. DOI 10.14232/ejqtde.2012.1.9 | MR 2878794 | Zbl 1340.34174
[32] Yan, Y., Wang, W.: Global stability of a five-dimesional model with immune responses and delay. Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 401-416. DOI 10.3934/dcdsb.2012.17.401 | MR 2843287 | Zbl 1233.92061
[33] Yousfi, N., Hattaf, K., Tridane, A.: Modeling the adaptive immune response in HBV infection. J. Math. Biol. 63 (2011), 933-957. DOI 10.1007/s00285-010-0397-x | MR 2844670 | Zbl 1234.92040
[34] Zhao, Y., Xu, Z.: Global dynamics for a delayed hepatitis C virus infection model. Electron. J. Differ. Equ. 2014 (2014), 1-18. MR 3239375 | Zbl 1304.34141
[35] Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 511-524. DOI 10.3934/dcdsb.2009.12.511 | MR 2525152 | Zbl 1169.92033
Partner of
EuDML logo