Title:
|
On generalized Douglas-Weyl Randers metrics (English) |
Author:
|
Tabatabaeifar, Tayebeh |
Author:
|
Najafi, Behzad |
Author:
|
Rafie-Rad, Mehdi |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
155-172 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics. (English) |
Keyword:
|
generalized Douglas-Weyl metric |
Keyword:
|
Randers metric |
Keyword:
|
Kenmotsu manifold |
Keyword:
|
Sasakian manifold |
MSC:
|
53B40 |
MSC:
|
53C60 |
idZBL:
|
07332710 |
idMR:
|
MR4226475 |
DOI:
|
10.21136/CMJ.2020.0241-19 |
. |
Date available:
|
2021-03-12T16:12:10Z |
Last updated:
|
2023-04-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148733 |
. |
Reference:
|
[1] Bácsó, S., Papp, I.: A note on a generalized Douglas space.Period. Math. Hung. 48 (2004), 181-184. Zbl 1104.53015, MR 2077695, 10.1023/B:MAHU.0000038974.24588.83 |
Reference:
|
[2] Bao, D., Robles, C.: Ricci and flag curvatures in Finsler geometry.A Sampler of Riemann-Finsler Geometry Mathematical Sciences Research Institute Publications 50. Cambridge University Press, Cambridge (2004), 197-259. Zbl 1076.53093, MR 2132660 |
Reference:
|
[3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds.Progress in Mathematics 203. Birkhäuser, Basel (2010). Zbl 1246.53001, MR 2682326, 10.1007/978-0-8176-4959-3 |
Reference:
|
[4] Cheng, X., Shen, Z.: Finsler Geometry: An Approach Via Randers Spaces.Springer, Berlin (2012). Zbl 1268.53081, MR 3015145, 10.1007/978-3-642-24888-7 |
Reference:
|
[5] Emamian, M. H., Tayebi, A.: Generalized Douglas-Weyl Finsler metrics.Iran. J. Math. Sci. Inform. 10 (2015), 67-75. Zbl 1336.53086, MR 3497134 |
Reference:
|
[6] Hall, G.: On the converse of Weyl's conformal and projective theorems.Publ. Inst. Math., Nouv. Sér. 94 (2013), 55-65. Zbl 1340.53013, MR 3137490, 10.2298/PIM1308055H |
Reference:
|
[7] Hasegawa, I., Sabau, V. S., Shimada, H.: Randers spaces of constant flag curvature induced by almost contact metric structures.Hokkaido Math. J. 33 (2004), 215-232. Zbl 1062.53014, MR 2034815, 10.14492/hokmj/1285766001 |
Reference:
|
[8] Li, B., Shen, Z.: On Randers metrics of quadratic Riemann curvature.Int. J. Math. 20 (2009), 369-376. Zbl 1171.53020, MR 2500075, 10.1142/S0129167X09005315 |
Reference:
|
[9] Milkovszki, T., Muzsnay, Z.: On the projective Finsler metrizability and the integrability of Rapcsák equation.Czech. Math. J. 67 (2017), 469-495. Zbl 06738532, MR 3661054, 10.21136/CMJ.2017.0010-16 |
Reference:
|
[10] Nagaraja, H. G., Kumar, D. L. Kiran, Prasad, V. S.: Ricci solitons on Kenmotsu manifolds under $D$-homothetic deformation.Khayyam J. Math. 4 (2018), 102-109. Zbl 1412.53048, MR 3769595, 10.22034/kjm.2018.57725 |
Reference:
|
[11] Najafi, B., Bidabad, B., Tayebi, A.: On $R$-quadratic Finsler metrics.Iran. J. Sci. Technol., Trans. A, Sci. 4 (2007), 439-443. Zbl 1169.53319, MR 2525916 |
Reference:
|
[12] Najafi, B., Shen, Z., Tayebi, A.: On a projective class of Finsler metrics.Publ. Math. 70 (2007), 211-219. Zbl 1127.53017, MR 2288477 |
Reference:
|
[13] Najafi, B., Tayebi, A.: Some curvature properties of $(\alpha, \beta)$-metrics.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 277-291. Zbl 1399.53034, MR 3701890 |
Reference:
|
[14] Oubiña, A. J.: New classes of almost contact metric structure.Publ. Math. 32 (1985), 187-193. Zbl 0611.53032, MR 0834769 |
Reference:
|
[15] Shen, Z.: Volume comparison and its applications in Riemann-Finsler geometry.Adv. Math. 128 (1997), 306-328. Zbl 0919.53021, MR 1454401, 10.1006/aima.1997.1630 |
Reference:
|
[16] Shen, Y., Yu, Y.: On projectively related Randers metrics.Int. J. Math. 19 (2008), 503-520. Zbl 1152.53015, MR 2418194, 10.1142/S0129167X08004789 |
Reference:
|
[17] Tanno, S.: The topology of contact Riemannian manifolds.Ill. J. Math. 12 (1968), 700-717. Zbl 0165.24703, MR 0234486, 10.1215/ijm/1256053971 |
Reference:
|
[18] Tayebi, A., Barzegari, M.: Generalized Berwald spaces with $(\alpha, \beta)$-metrics.Indag. Math., New Ser. 27 (2016), 670-683. Zbl 1343.53077, MR 3505987, 10.1016/j.indag.2016.01.002 |
Reference:
|
[19] Tayebi, A., Najafi, B.: A class of homogeneous Finsler metrics.J. Geom. Phys. 140 (2019), 265-270. Zbl 1417.53024, MR 3925072, 10.1016/j.geomphys.2019.01.006 |
Reference:
|
[20] Tayebi, A., Peyghan, E.: On a subclass of the generalized Douglas-Weyl metrics.J. Contemp. Math. Anal., Armen. Acad. Sci. 47 (2012), 70-77. Zbl 1302.53081, MR 3287918, 10.3103/S1068362312020033 |
Reference:
|
[21] Tayebi, A., Sadeghi, H.: On generalized Douglas-Weyl $(\alpha, \beta)$-metrics.Acta Math. Sin., Engl. Ser. 31 (2015), 1611-1620. Zbl 1327.53026, MR 3397088, 10.1007/s10114-015-3418-2 |
Reference:
|
[22] Tayebi, A., Sadeghi, H., Peyghan, E.: On generalized Douglas-Weyl spaces.Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 587-594. Zbl 1272.53067, MR 3071751 |
Reference:
|
[23] Wang, Y.: Minimal Reeb vector fields on almost Kenmotsu manifolds.Czech. Math. J. 67 (2017), 73-86. Zbl 1424.53112, MR 3632999, 10.21136/CMJ.2017.0377-15 |
Reference:
|
[24] Xing, H.: The geometric meaning of Randers metrics with isotropic $S$-curvature.Adv. Math., Beijing 34 (2005), 717-730. MR 2213060 |
. |