Previous |  Up |  Next

Article

Title: On generalized Douglas-Weyl Randers metrics (English)
Author: Tabatabaeifar, Tayebeh
Author: Najafi, Behzad
Author: Rafie-Rad, Mehdi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 155-172
Summary lang: English
.
Category: math
.
Summary: We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics. (English)
Keyword: generalized Douglas-Weyl metric
Keyword: Randers metric
Keyword: Kenmotsu manifold
Keyword: Sasakian manifold
MSC: 53B40
MSC: 53C60
idZBL: 07332710
idMR: MR4226475
DOI: 10.21136/CMJ.2020.0241-19
.
Date available: 2021-03-12T16:12:10Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148733
.
Reference: [1] Bácsó, S., Papp, I.: A note on a generalized Douglas space.Period. Math. Hung. 48 (2004), 181-184. Zbl 1104.53015, MR 2077695, 10.1023/B:MAHU.0000038974.24588.83
Reference: [2] Bao, D., Robles, C.: Ricci and flag curvatures in Finsler geometry.A Sampler of Riemann-Finsler Geometry Mathematical Sciences Research Institute Publications 50. Cambridge University Press, Cambridge (2004), 197-259. Zbl 1076.53093, MR 2132660
Reference: [3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds.Progress in Mathematics 203. Birkhäuser, Basel (2010). Zbl 1246.53001, MR 2682326, 10.1007/978-0-8176-4959-3
Reference: [4] Cheng, X., Shen, Z.: Finsler Geometry: An Approach Via Randers Spaces.Springer, Berlin (2012). Zbl 1268.53081, MR 3015145, 10.1007/978-3-642-24888-7
Reference: [5] Emamian, M. H., Tayebi, A.: Generalized Douglas-Weyl Finsler metrics.Iran. J. Math. Sci. Inform. 10 (2015), 67-75. Zbl 1336.53086, MR 3497134
Reference: [6] Hall, G.: On the converse of Weyl's conformal and projective theorems.Publ. Inst. Math., Nouv. Sér. 94 (2013), 55-65. Zbl 1340.53013, MR 3137490, 10.2298/PIM1308055H
Reference: [7] Hasegawa, I., Sabau, V. S., Shimada, H.: Randers spaces of constant flag curvature induced by almost contact metric structures.Hokkaido Math. J. 33 (2004), 215-232. Zbl 1062.53014, MR 2034815, 10.14492/hokmj/1285766001
Reference: [8] Li, B., Shen, Z.: On Randers metrics of quadratic Riemann curvature.Int. J. Math. 20 (2009), 369-376. Zbl 1171.53020, MR 2500075, 10.1142/S0129167X09005315
Reference: [9] Milkovszki, T., Muzsnay, Z.: On the projective Finsler metrizability and the integrability of Rapcsák equation.Czech. Math. J. 67 (2017), 469-495. Zbl 06738532, MR 3661054, 10.21136/CMJ.2017.0010-16
Reference: [10] Nagaraja, H. G., Kumar, D. L. Kiran, Prasad, V. S.: Ricci solitons on Kenmotsu manifolds under $D$-homothetic deformation.Khayyam J. Math. 4 (2018), 102-109. Zbl 1412.53048, MR 3769595, 10.22034/kjm.2018.57725
Reference: [11] Najafi, B., Bidabad, B., Tayebi, A.: On $R$-quadratic Finsler metrics.Iran. J. Sci. Technol., Trans. A, Sci. 4 (2007), 439-443. Zbl 1169.53319, MR 2525916
Reference: [12] Najafi, B., Shen, Z., Tayebi, A.: On a projective class of Finsler metrics.Publ. Math. 70 (2007), 211-219. Zbl 1127.53017, MR 2288477
Reference: [13] Najafi, B., Tayebi, A.: Some curvature properties of $(\alpha, \beta)$-metrics.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 277-291. Zbl 1399.53034, MR 3701890
Reference: [14] Oubiña, A. J.: New classes of almost contact metric structure.Publ. Math. 32 (1985), 187-193. Zbl 0611.53032, MR 0834769
Reference: [15] Shen, Z.: Volume comparison and its applications in Riemann-Finsler geometry.Adv. Math. 128 (1997), 306-328. Zbl 0919.53021, MR 1454401, 10.1006/aima.1997.1630
Reference: [16] Shen, Y., Yu, Y.: On projectively related Randers metrics.Int. J. Math. 19 (2008), 503-520. Zbl 1152.53015, MR 2418194, 10.1142/S0129167X08004789
Reference: [17] Tanno, S.: The topology of contact Riemannian manifolds.Ill. J. Math. 12 (1968), 700-717. Zbl 0165.24703, MR 0234486, 10.1215/ijm/1256053971
Reference: [18] Tayebi, A., Barzegari, M.: Generalized Berwald spaces with $(\alpha, \beta)$-metrics.Indag. Math., New Ser. 27 (2016), 670-683. Zbl 1343.53077, MR 3505987, 10.1016/j.indag.2016.01.002
Reference: [19] Tayebi, A., Najafi, B.: A class of homogeneous Finsler metrics.J. Geom. Phys. 140 (2019), 265-270. Zbl 1417.53024, MR 3925072, 10.1016/j.geomphys.2019.01.006
Reference: [20] Tayebi, A., Peyghan, E.: On a subclass of the generalized Douglas-Weyl metrics.J. Contemp. Math. Anal., Armen. Acad. Sci. 47 (2012), 70-77. Zbl 1302.53081, MR 3287918, 10.3103/S1068362312020033
Reference: [21] Tayebi, A., Sadeghi, H.: On generalized Douglas-Weyl $(\alpha, \beta)$-metrics.Acta Math. Sin., Engl. Ser. 31 (2015), 1611-1620. Zbl 1327.53026, MR 3397088, 10.1007/s10114-015-3418-2
Reference: [22] Tayebi, A., Sadeghi, H., Peyghan, E.: On generalized Douglas-Weyl spaces.Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 587-594. Zbl 1272.53067, MR 3071751
Reference: [23] Wang, Y.: Minimal Reeb vector fields on almost Kenmotsu manifolds.Czech. Math. J. 67 (2017), 73-86. Zbl 1424.53112, MR 3632999, 10.21136/CMJ.2017.0377-15
Reference: [24] Xing, H.: The geometric meaning of Randers metrics with isotropic $S$-curvature.Adv. Math., Beijing 34 (2005), 717-730. MR 2213060
.

Files

Files Size Format View
CzechMathJ_71-2021-1_7.pdf 346.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo