[1] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.:
Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos 5. World Scientific, Hackensack (2012).
DOI 10.1142/8180 |
MR 2894576 |
Zbl 1248.26011
[2] Benson, D. A., Schumer, R., Meerschaert, M. M., Wheatcraft, S. W.:
Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42 (2001), 211-240.
DOI 10.1023/A:1006733002131 |
MR 1948593
[3] Bhrawy, A. H., Doha, E. H., Ezz-Eldien, S. S., Gorder, R. A. Van:
A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems. Eur. Phys. J. Plus 129 (2014), Article ID 260, 21 pages.
DOI 10.1140/epjp/i2014-14260-6 |
MR 2930392
[4] Bratsos, A. G.:
A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation. Korean J. Comput. Appl. Math. 8 (2001), 459-467.
DOI 10.1007/BF02941979 |
MR 1848910 |
Zbl 1015.65042
[8] Chen, B., He, D., Pan, K.:
A CCD-ADI method for two-dimensional linear and nonlinear hyperbolic telegraph equations with variable coefficients. Int. J. Comput. Math. 96 (2019), 992-1004.
DOI 10.1080/00207160.2018.1478415 |
MR 3911287
[11] Dehghan, M., Taleei, A.:
A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Commun. 181 (2010), 43-51.
DOI 10.1016/j.cpc.2009.08.015 |
MR 2575184 |
Zbl 1206.65207
[12] Feynman, R. P., Hibbs, A. R.:
Quantum Mechanics and Path Integrals. Dover Publications, New York (2010).
MR 2797644 |
Zbl 1220.81156
[13] Gao, G.-H., Sun, H.-W.:
Three-point combined compact alternating direction implicit difference schemes for two-dimensional time-fractional advection-diffusion equations. Commun. Comput. Phys. 17 (2015), 487-509.
DOI 10.4208/cicp.180314.010914a |
MR 3371511 |
Zbl 1388.65052
[15] Gao, G.-H., Sun, H.-W., Sun, Z.-Z.:
Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280 (2015), 510-528.
DOI 10.1016/j.jcp.2014.09.033 |
MR 3273149 |
Zbl 1349.65295
[21] He, D., Pan, K.:
An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrödinger equations with variable coefficients in two and three dimensions. Comput. Math. Appl. 73 (2017), 2360-2374.
DOI 10.1016/j.camwa.2017.04.009 |
MR 3648018 |
Zbl 1373.65056
[22] Jones, T. N., Sheng, Q.:
Asymptotic stability of a dual-scale compact method for approximating highly oscillatory Helmholtz solutions. J. Comput. Phys. 392 (2019), 403-418.
DOI 10.1016/j.jcp.2019.04.046 |
MR 3948727
[23] Khan, N. A., Jamil, M., Ara, A.:
Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method. Int. Sch. Res. Not. 2012 (2012), Article ID 197068, 11 pages.
DOI 10.5402/2012/197068
[24] Klages, R., Radons, G., (eds.), I. M. Sokolov:
Anomalous Transport: Foundations and Applications. Wiley, Weinheim (2008).
DOI 10.1002/9783527622979
[28] Li, D., Wang, J., Zhang, J.:
Unconditionally convergent $L1$-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39 (2017), A3067--A3088.
DOI 10.1137/16M1105700 |
MR 3738320 |
Zbl 1379.65079
[30] Mohebbi, A., Abbaszadeh, M., Dehghan, M.:
The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 37 (2013), 475-485.
DOI 10.1016/j.enganabound.2012.12.002 |
MR 3018826 |
Zbl 1352.65397
[35] Shivanian, E., Jafarabadi, A.:
Error and stability analysis of numerical solution for the time fractional nonlinear Schrödinger equation on scattered data of general-shaped domains. Numer. Methods Partial Differ. Equations 33 (2017), 1043-1069.
DOI 10.1002/num.22126 |
MR 3652177 |
Zbl 1379.65082
[38] Wang, Y.-M., Ren, L.:
Efficient compact finite difference methods for a class of timefractional convection-reaction-diffusion equations with variable coefficients. Int. J. Comput. Math. 96 (2019), 264-297.
DOI 10.1080/00207160.2018.1437262 |
MR 3893479
[40] Wei, L., He, Y., Zhang, X., Wang, S.:
Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59 (2012), 28-34.
DOI 10.1016/j.finel.2012.03.008 |
MR 2949417