[1] Asanov, G.S.:
Finsleroid space with angle and scalar product. Publ. Math. Debrecen 67 (2005), 209–252.
MR 2163126
[3] Bao, D., Chern, S.S., Shen, Z.:
An Introduction to Riemann-Finsler Geometry. Springer, Berlin, 2000.
MR 1747675 |
Zbl 0954.53001
[4] Chern, S.S., Shen, Z.:
Riemann-Finsler geometry. Nankai Tracts in Mathematics, vol. 6, World Scientific, 2005.
MR 2169595
[8] Kikuchi, S.:
On the condition that a space with $ (\alpha ,\beta ) $-metric be locally Minkowskian. Tensor, N.S. 33 (1979), 142–246.
MR 0577431
[9] Kobayashi, S., Nomizu, K.:
Foundations of differential geometry. Wiley-Interscience, New York, 1969.
MR 0152974 |
Zbl 0175.48504
[12] Matsumoto, M.:
The Berwald connection of a Finsler space with an $ (\alpha ,\beta ) $-metric. Tensor, N.S. 50 (1991), 18–21.
MR 1156480
[14] Moghaddam, H.R. Salimi:
The flag curvature of invariant $(\alpha ,\beta )-$metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$. J. Phys. A: Math. Theor. 41 (2008), 6 pp., 275206.
DOI 10.1088/1751-8113/41/27/275206 |
MR 2455543
[15] Randers, G.:
On an asymmetrical metric in the four-space of general relativity. On an asymmetrical metric in the four-space of general relativity 59 (1941), 195–199.
MR 0003371 |
Zbl 0027.18101