[1] Bouarroudj, S., Grozman, P., Leites, D.:
Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix. SIGMA. Symmetry, Integrability and Geometry Mathods Applications, 5, 2009, 1-63,
MR 2529187
[2] Feldvoss, J., Wagemann, F.:
On Leibniz cohomology. arXiv:1902.06128, 2019, 1-30,
MR 4187237
[4] Loday, J.-L.:
Une version non commutative des algèbres de Leibniz. L'Enseignement Mathématique, 39, 2, 1993, 269-293,
MR 1252069
[5] Loday, J.-L., Pirashvili, T.:
Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag,
DOI 10.1007/BF01445099 |
MR 1213376
[6] Lopatkin, V., Zusmanovich, P.:
Commutative Lie algebras and commutative cohomology in characteristic $2$. Communications in Contemporary Mathematics, 2020, 1-14, DOI:10.1142/S0219199720500467.
DOI 10.1142/S0219199720500467
[8] Strade, H.:
Simple Lie algebras over fields of positive characteristic. Vol. I. Structure theory. Second edition. 1, 2017, De Gruyter Expositions in Mathematics,
MR 3642321
[9] Strade, H.:
Simple Lie algebras over fields of positive characteristic. Vol. II. Classifying the absolute toral rank two case. Second edition. 42, 2017, De Gruyter Expositions in Mathematics,
MR 3642323
[10] Strade, H.:
Simple Lie algebras over fields of positive characteristic. Vol. III. Completion of the classification. 42, 2017, De Gruyter Expositions in Mathematics,
MR 3642323
[11] Weisfeiler, B.Yu., Kac, V.G.:
Exponentials in Lie algebras of characteristic $p$. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35, 4, 1971, 762-788, Russian Academy of Sciences, Steklov Mathematical Institute of Russian Academy of Sciences,
MR 0306282