Previous |  Up |  Next

Article

Keywords:
Leibniz cohomology; Chevalley-Eilenberg cohomology; spectral sequence; commutative Lie algebra; commutative cohomology
Summary:
We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.
References:
[1] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix. SIGMA. Symmetry, Integrability and Geometry Mathods Applications, 5, 2009, 1-63, MR 2529187
[2] Feldvoss, J., Wagemann, F.: On Leibniz cohomology. arXiv:1902.06128, 2019, 1-30, MR 4187237
[3] Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras. Annals of Mathematics, 1953, 591-603, JSTOR, DOI 10.2307/1969740 | MR 0054581 | Zbl 0053.01402
[4] Loday, J.-L.: Une version non commutative des algèbres de Leibniz. L'Enseignement Mathématique, 39, 2, 1993, 269-293, MR 1252069
[5] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, DOI 10.1007/BF01445099 | MR 1213376
[6] Lopatkin, V., Zusmanovich, P.: Commutative Lie algebras and commutative cohomology in characteristic $2$. Communications in Contemporary Mathematics, 2020, 1-14, DOI:10.1142/S0219199720500467. DOI 10.1142/S0219199720500467
[7] Pirashvili, T.: On Leibniz homology. Annales de l'institut Fourier, 44, 2, 1994, 401-411, DOI 10.5802/aif.1403 | MR 1296737
[8] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. I. Structure theory. Second edition. 1, 2017, De Gruyter Expositions in Mathematics, MR 3642321
[9] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. II. Classifying the absolute toral rank two case. Second edition. 42, 2017, De Gruyter Expositions in Mathematics, MR 3642323
[10] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. III. Completion of the classification. 42, 2017, De Gruyter Expositions in Mathematics, MR 3642323
[11] Weisfeiler, B.Yu., Kac, V.G.: Exponentials in Lie algebras of characteristic $p$. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35, 4, 1971, 762-788, Russian Academy of Sciences, Steklov Mathematical Institute of Russian Academy of Sciences, MR 0306282
Partner of
EuDML logo