[1] Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W.:
Network information flow. IEEE Trans. Inform. Theory 46 (2007), 1204-1216.
DOI 10.1109/18.850663 |
MR 1768542
[2] Alam, S., Thakor, S., Abbas, S.: On Enumerating Distributions for Associated Vectors in the Entropy Space. arXiv:1807.08573, 2018.
[4] Boston, N., Nan, T.-T.:
Large violations of the Ingleton inequality. In: 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012.
DOI 10.1109/allerton.2012.6483410
[5] Boston, N., Nan, T.-T.:
A refinement of the four-atom conjecture. In: International Symposium on Network Coding (NetCod), 2013.
DOI 10.1109/netcod.2013.6570833
[6] Chen, T.:
Group characterizable entropiy functions. In: Proc. of the 2005 IEEE International Symposium on Information Theory, Nice 2007, pp. 507-510.
DOI 10.1109/isit.2007.4557275
[8] Chou, P. A., Wu, Y., Jain, K.: Practical network coding. In: Proc. 2003 Allerton Conf. on Commun., Control, and Computing, 2003, pp. 40-49.
[9] Dougherty, R., Freiling, C., Zeger, K.:
Insufficiency of linear coding in network information flow. IEEE Trans. Inform. Theory 51 (2005), 2745-2759.
DOI 10.1109/tit.2005.851744 |
MR 2236245
[10] Dougherty, R., Freiling, C., Zeger, K.:
Networks, matroids, and non-Shannon information inequalities. IEEE Trans. Inform. Theory 53 (2007), 1949-1969.
DOI 10.1109/tit.2007.896862 |
MR 2321860
[11] Dougherty, R., Freiling, C., Zeger, K.:
Non-Shannon information inequalities in four random variables. arXiv:1104.3602v1, 2011.
MR 2321860
[12] Ho, T., Médard, M., Koetter, R., Karger, D. R., Effros, M., Shi, J., Leong, B.:
A random linear network coding approach to multicast. IEEE Trans. Inform. Theory 52 (2006), 4413-4430.
DOI 10.1109/tit.2006.881746 |
MR 2300827
[13] Ingleton, A.:
Representation of matroids. In: Combinatorial Mathematics and its Applications, 1971, pp. 149-167.
MR 0278974
[15] Koetter, R., Médard, M.:
An algebraic approach to network coding. IEEE/ACM Trans. Network. 2 (2003), 782-795.
DOI 10.1109/tnet.2003.818197
[17] Makarycheve, K., Makarycheve, L., Romashchenko, A. E., Vereshchagin, N. K.:
A new class of non-Shannon type inequalities for entropies. Com. Inform. Syst. 2 (2002), 147-166.
DOI 10.4310/cis.2002.v2.n2.a3 |
MR 1958013
[21] Matúš, F.:
Infinitely many information inequalities. In: IEEE International Symposium on Information Theory, IEEE 2007, pp. 41-44.
DOI 10.1109/isit.2007.4557201
[24] Muralidharan, V. T., Rajan, B. S.: On the vector linear solvability of networks and discrete polymatroids. GLOBECOM 2013, pp. 1979-1984.
[25] Nan, T.-T.:
Entropy Regions and the Four-Atom Conjecture. PhD. Dissertation, Department of Mathematics, University of Wisconsin-Madison, 2015.
MR 3358242
[26] Paajanen, P.:
Finite p-groups, entropy vectors and the ingleton inequality for nilpotent groups. IEEE Trans. Inform. Theory 60 (2014), 3821-3824.
DOI 10.1109/TIT.2014.2321561 |
MR 3225931
[27] Stancu, R., Oggier, F.:
Finite nilpotent and metacyclic groups never violate the Ingleton inequality. 2012 International Symposium on Network Coding (NetCod), 2012, pp. 25-30.
DOI 10.1109/netcod.2012.6261879
[29] Yeung, R. W.: Information Theory and Network Coding. Springer, 2008.
[30] Zhang, Z., Yeung, R. W.:
A non-Shannon type conditional inequality of information quantities. IEEE Trans. Inform. Theory 43 (1997), 1982-1986.
DOI 10.1109/18.641561 |
MR 1481054
[31] Zhang, Z., Yeung, R. W.:
On characterization of entropy function via information inequalities. IEEE Trans. Inform. Theory 44 (1998), 1440-1452.
DOI 10.1109/18.681320 |
MR 1665794