[1] Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W.:
Network information flow. IEEE Trans. Inform. Theory 46 (2000), 1204-1216.
DOI 10.1109/18.850663 |
MR 1768542
[3] Christof, T., Loebel, A.: Porta: Polyhedron Representation Transformation Algorithm, Version 1.4.1.
[5] Dougherty, R., Freiling, C., Zeger, K.: Linear rank inequalities on five or more variables. Available at arXiv.org, arXiv:0910.0284, 2019.
[6] Martí-Farré, J., Padró, C.:
Ideal secret sharing schemes whose minimal qualified subsets have at most three participants. Des. Codes Cryptogr. 52 (2009), 1-14.
DOI 10.1007/s10623-008-9264-9 |
MR 2496243
[8] Ingleton, A. W.:
Representation of matroids. In: Combinatorial mathematics and its applications (D. J. A. Welsh, ed.) Academic Press, London, New York 1971, pp. 149-169.
MR 0278974
[9] Lovász, L.:
Submodular functions and convexity. In: Mathematical Programming - The State of the Art (A. Bachem, M. Grötchel and B. Korte, eds.), Springer-Verlag, Berlin 1982, pp. 234-257.
DOI 10.1007/978-3-642-68874-4_10 |
MR 0717403
[10] Matúš, F.:
Probabilistic conditional independence structures and matroid theory: background. Int. J. General Syst. 22 (1994), 185-196.
DOI 10.1080/03081079308935205
[13] Matúš, F.: Infinitely many information inequalities. In: Proc. IEEE ISIT 2007, Nice, pp. 41-44.
[15] Oxley, J. G.:
Matroid Theory. Oxford Science Publications. The Calrendon Press, Oxford University Press, New York 1992.
MR 1207587
[16] Padró, C.: Lecture Notes in Secret Sharing. Cryptology ePrint Archive 2012/674.
[18] Studeny, M., Bouckaert, R. R., Kocka, T.: Extreme Supermodular Set Functions over Five Variables. Research Report No. 1977, Institute of Information Theory and Automation, Prague 2000.
[19] Yeung, R. W.:
A first course in information theory. Kluwer Academic / Plenum Publishers 2002.
MR 2042182