[1] Birkhoff, G.:
Lattice Theory. Third edition. American Mathematical Society, Colloquium Publications 25, Providence 1995.
MR 0598630
[3] Chvátal, V., Matúš, F., Zwólš, Y.: Patterns of conjuctive forks. A 2016 manuscript arXiv/1608.03949.
[4] Cox, D., Little, J., O'Shea, D.:
Ideals, Varieties, and Algorithms. Springer, New York 1997.
MR 2290010 |
Zbl 1118.13001
[6] Dawid, A. P.:
Separoids: a mathematical framework for conditional independence and irrelevance. Ann. Math. Artif. Intell. 32 (2001), 1/4, 335-372.
DOI 10.1023/a:1016734104787 |
MR 1859870
[7] Fujishige, S.:
Submodular Functions and Optimization. Second edition. Elsevier, Amsterdam 2005.
MR 2171629
[9] Geiger, D., Pearl, J.:
Logical and algorithmic properties of conditional independence and graphical models. Ann. Statist. 21 (1993), 4, 2001-2021.
DOI 10.1214/aos/1176349407 |
MR 1245778
[10] Ingleton, A. W.:
Conditions for representability and transversality of matroids. In: Lecture Notes in Computer Science 211, Springer, 1971, pp. 62-67.
DOI 10.1007/bfb0061075 |
MR 0337664
[11] Lauritzen, S. L.:
Graphical Models. Clarendon Press, Oxford 1996.
MR 1419991
[12] Loéve, M.:
Probability Theory, Foundations, Random Sequences. Van Nostrand, Toronto 1955.
MR 0066573
[13] Lněnička, R., Matúš, F.:
On Gaussian conditional independence structures. Kybernetika 43 (2007), 3, 327-342.
DOI |
MR 2362722
[14] Malvestuto, F. M.:
A unique formal system for binary decompositions of database relations, probability distributions and graphs. Inform. Sci. 59 (1992), 21-52.
DOI 10.1016/0020-0255(92)90042-7 |
MR 1128204
[15] Matúš, F.: Independence and Radon Projections on Compact Groups (in Slovak). Thesis for CSc. Degree in Theoretical Computer Science, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1988.
[18] Matúš, F.: Ascending and descending conditional independence relations. In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, volume B, Academia, Prague 1992, pp. 189-200.
[20] Matúš, F.:
Probabilistic conditional independence structures and matroid theory: background. Int. J. General Systems 22 (1994), 185-196.
DOI 10.1080/03081079308935205
[28] Matúš, F.:
Conditional independences in Gaussian vectors and rings of polynomials. In: Proc. WCII 2002, Lecture Notes in Artificial Intelligence 3301, Springer, Berlin 2005, pp. 152-161.
DOI
[29] Matúš, F.:
On conditional independence and log-convexity. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 48 (2012), 4, 1137-1147.
DOI 10.1214/11-aihp431 |
MR 3052406
[31] Mouchart, M., Rolin, J. M.:
A note on conditional independences with statistical applications. Statistica 44 (1984), 557-584.
DOI |
MR 0818481
[33] Oxley, J. G.:
Matroid Theory. Oxford University Press, Oxford 1992.
MR 1207587
[34] Pearl, J.:
Probabilistic Reasoning in Intelligent Systems - Networks of Plausible Inference. Morgan Kaufmann, San Francisco 1988.
MR 0965765
[35] Reichenbach, H.: The Direction of Time. University of California Press, Los Angeles 1956.
[37] Studený, M.: Conditional independence relations have no finite complete characterization. In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, volume B, Academia, Prague 1992, pp. 377-396.
[42] Whittaker, J.:
Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, Chichester 1990.
MR 1112133
[43] Yeung, R. W.: Information Theory and Network Coding. Springer, New York 2008.
[44] Zhang, Z., Yeung, R. W.:
A non-Shannon-type conditional inequality of information quantities. IEEE Trans. Inform. Theory 43 (1997), 1982-1986.
DOI 10.1109/18.641561 |
MR 1481054